
BEAWebLogic
Server®

Programming WebLogic
JMS

Version 9.2
Revised: January 23, 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Programming WebLogic JMS iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-2

Related Documentation . 1-3

Samples and Tutorials for the JMS Developer . 1-3

Avitek Medical Records Application (MedRec) and Tutorials 1-3

JMS Examples in the WebLogic Server Distribution . 1-4

New and Changed JMS Features In This Release . 1-4

2. Understanding WebLogic JMS
Overview of the Java Message Service and WebLogic JMS. 2-1

What Is the Java Message Service? . 2-1

Implementation of Java Specifications . 2-2

J2EE Specification. 2-2

JMS Specification . 2-2

WebLogic JMS Architecture. 2-2

Major Components . 2-3

Understanding the Messaging Models . 2-4

Point-to-Point Messaging . 2-4

Publish/Subscribe Messaging . 2-5

Message Persistence . 2-6

Value-Added Public JMS API Extensions. 2-7

iv Programming WebLogic JMS

WebLogic Server Value-Added JMS Features. 2-7

Understanding the JMS API . 2-9

ConnectionFactory . 2-10

Using the Default Connection Factories . 2-10

Configuring and Deploying Connection Factories . 2-12

The ConnectionFactory Class . 2-12

Connection . 2-13

Session . 2-14

WebLogic JMS Session Guidelines . 2-14

Session Subclasses . 2-14

Non-Transacted Session . 2-15

Transacted Session . 2-16

Destination . 2-17

Distributed Destinations . 2-18

MessageProducer and MessageConsumer . 2-19

Message . 2-20

Message Header Fields . 2-20

Message Property Fields . 2-25

Message Body. 2-26

ServerSessionPoolFactory . 2-27

ServerSessionPool . 2-28

ServerSession . 2-28

ConnectionConsumer. 2-28

3. Best Practices for Application Design
Message Design. 3-1

Serializing Application Objects . 3-2

Serializing strings. 3-2

Programming WebLogic JMS v

Server-side serialization . 3-2

Selection . 3-2

Message Compression . 3-2

Message Properties and Message Header Fields . 3-3

Message Ordering . 3-3

Topics vs. Queues . 3-4

Asynchronous vs. Synchronous Consumers . 3-4

Persistent vs. Non-Persistent Messages. 3-5

Deferring Acknowledges and Commits. 3-6

Using AUTO_ACK for Non-Durable Subscribers . 3-7

Alternative Qualities of Service, Multicast and No-Acknowledge 3-7

Using MULTICAST_NO_ACKNOWLEDGE . 3-7

Using NO_ACKNOWLEDGE. 3-8

Avoid Multi-threading . 3-8

4. Developing a Basic JMS Application
Importing Required Packages . 4-2

Setting Up a JMS Application . 4-2

Step 1: Look Up a Connection Factory in JNDI . 4-4

Step 2: Create a Connection Using the Connection Factory 4-5

Create a Queue Connection. 4-5

Create a Topic Connection . 4-5

Step 3: Create a Session Using the Connection . 4-6

Create a Queue Session . 4-6

Create a Topic Session . 4-7

Step 4: Look Up a Destination (Queue or Topic) . 4-7

Using a JNDI Name . 4-7

Use a Reference. 4-8

vi Programming WebLogic JMS

Step 5: Create Message Producers and Message Consumers Using the Session and
Destinations . 4-9

Create QueueSenders and QueueReceivers . 4-9

Create TopicPublishers and TopicSubscribers . 4-10

Step 6a: Create the Message Object (Message Producers) 4-11

Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
4-12

Step 7: Start the Connection. 4-14

Example: Setting Up a PTP Application . 4-14

Example: Setting Up a Pub/Sub Application . 4-17

Sending Messages . 4-20

Create a Message Object . 4-20

Define a Message . 4-20

Send the Message to a Destination . 4-21

Send a Message Using Queue Sender. 4-21

Send a Message Using TopicPublisher . 4-23

Setting Message Producer Attributes . 4-25

Example: Sending Messages Within a PTP Application . 4-26

Example: Sending Messages Within a Pub/Sub Application. 4-27

Receiving Messages . 4-27

Receiving Messages Asynchronously . 4-28

Asynchronous Message Pipeline . 4-28

Receiving Messages Synchronously . 4-29

Using the Prefetch Mode to Create a Synchronous Message Pipeline 4-30

Example: Receiving Messages Synchronously Within a PTP Application . . . 4-30

Example: Receiving Messages Synchronously Within a Pub/Sub Application 4-31

Recovering Received Messages. 4-31

Acknowledging Received Messages . 4-32

Programming WebLogic JMS vii

Releasing Object Resources . 4-32

5. Managing Your Applications
Managing Rolled Back, Recovered, Redelivered, or Expired Messages 5-1

Setting a Redelivery Delay for Messages. 5-2

Setting a Redelivery Delay . 5-2

Overriding the Redelivery Delay on a Destination . 5-3

Setting a Redelivery Limit for Messages . 5-3

Configuring a Message Redelivery Limit On a Destination 5-4

Configuring an Error Destination for Undelivered Messages. 5-4

Ordered Redelivery of Messages . 5-4

Required Message Pipeline Setting for the Messaging Bridge and MDBs. 5-5

Performance Limitations . 5-6

Handling Expired Messages . 5-6

Setting Message Delivery Times . 5-6

Setting a Delivery Time on Producers . 5-6

Setting a Delivery Time on Messages . 5-7

Overriding a Delivery Time . 5-8

Interaction With the Time-to-Live Value . 5-8

Setting a Relative Time-to-Deliver Override . 5-8

Setting a Scheduled Time-to-Deliver Override. 5-8

JMS Schedule Interface. 5-10

Managing Connections . 5-11

Defining a Connection Exception Listener . 5-12

Accessing Connection Metadata . 5-12

Starting, Stopping, and Closing a Connection . 5-13

Managing Sessions . 5-15

Defining a Session Exception Listener. 5-15

viii Programming WebLogic JMS

Closing a Session . 5-16

Managing Destinations . 5-16

Dynamically Creating Destinations . 5-17

Dynamically Deleting Destinations . 5-17

Preconditions for Deleting Destinations . 5-17

What Happens when a Destination is Deleted . 5-17

Message Timestamps for Troubleshooting Deleted Destinations. 5-19

Deleted Destination Statistics . 5-19

Using Temporary Destinations . 5-20

Creating a Temporary Queue . 5-20

Creating a Temporary Topic. 5-20

Deleting a Temporary Destination . 5-21

Setting Up Durable Subscriptions . 5-21

Defining the Persistent Store . 5-22

Defining the Client ID . 5-22

Creating Subscribers for a Durable Subscription. 5-23

Best Practice: Always Close Failed JMS ClientIDs . 5-24

Deleting Durable Subscriptions . 5-25

Modifying Durable Subscriptions . 5-25

Managing Durable Subscriptions. 5-26

Setting and Browsing Message Header and Property Fields . 5-26

Setting Message Header Fields . 5-27

Setting Message Property Fields . 5-30

Browsing Header and Property Fields . 5-33

Filtering Messages. 5-34

Defining Message Selectors Using SQL Statements . 5-35

Defining XML Message Selectors Using XML Selector Method. 5-36

Displaying Message Selectors . 5-37

Programming WebLogic JMS ix

Indexing Topic Subscriber Message Selectors To Optimize Performance. 5-37

Sending XML Messages . 5-39

WebLogic XML APIs. 5-39

Using a String Representation . 5-39

Using a DOM Representation . 5-40

6. Using JMS Module Helper to Manage Applications
Configuring JMS System Resources Using JMSModuleHelper . 6-1

Configuring JMS Servers and Store-and-Forward Agents . 6-2

JMSModuleHelper Sample Code . 6-2

Creating a JMS System Resource. 6-2

Deleting a JMS System Resource. 6-4

Best Practices when Using JMSModuleHelper. 6-6

7. Using Multicasting with WebLogic Server
Benefits of using Multicasting. 7-1

Limitations of using Multicasting . 7-1

Configuring Multicasting for WebLogic Server . 7-2

Prerequisites for Multicasting. 7-2

Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber.
7-3

Step 2: Set Up the Message Listener . 7-4

Dynamically Configuring Multicasting Configuration Attributes 7-5

Example: Multicast TTL . 7-5

8. Using Distributed Destinations
What is a Distributed Destination? . 8-1

Why Use a Distributed Destination . 8-2

Creating a Distributed Destination . 8-2

x Programming WebLogic JMS

Types of Distributed Destinations. 8-2

Uniform Distributed Destinations . 8-2

Weighted Distributed Destinations . 8-3

Using Distributed Destinations . 8-3

Using Distributed Queues . 8-4

Queue Forwarding . 8-4

QueueSenders . 8-4

QueueReceivers . 8-5

QueueBrowsers . 8-5

Using Distributed Topics . 8-6

TopicPublishers. 8-6

TopicSubscribers. 8-7

Deploying Message-Driven Beans on a Distributed Topic. 8-8

Accessing Distributed Destination Members. 8-8

Accessing Uniform Destination Members . 8-8

Accessing Weighted Destination Members . 8-10

Distributed Destination Failover . 8-10

Using Message-Driven Beans with Distributed Destinations . 8-10

Common Use Cases for Distributed Destinations. 8-11

Maximizing Production . 8-11

Maximizing Availability . 8-12

Using Queues . 8-12

Using Topics . 8-12

Stuck Messages . 8-13

9. Enhanced J2EE Support for Using WebLogic JMS With EJBs and
Servlets

Enabling WebLogic JMS Wrappers . 9-1

Programming WebLogic JMS xi

Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors9-2

Declaring a Wrapped JMS Connection Factory . 9-2

Declaring JMS Destinations . 9-3

Sending a JMS Message In a J2EE Container . 9-4

What’s Happening Under the JMS Wrapper Covers. 9-5

Automatically Enlisting Transactions . 9-6

Container-Managed Security . 9-6

Connection Testing. 9-7

J2EE Compliance . 9-7

Pooled JMS Connection Objects . 9-8

Monitoring Pooled Connections. 9-8

Improving Performance Through Pooling. 9-8

Speeding Up JNDI Lookups by Pooling Session Objects . 9-8

Speeding Up Object Creation Through Caching . 9-9

Enlisting the Proper Transaction Mode . 9-9

Examples of JMS Wrapper Functions . 9-10

ejb-jar.xml. 9-10

weblogic-ejb-jar.xml. 9-11

PoolTest.java . 9-12

PoolTestHome.java. 9-12

PoolTestBean.java . 9-13

Simplified Access to Remote or Foreign JMS Providers . 9-15

10.Using Message Unit-of-Order
What Is Message Unit-Of-Order? . 10-1

Understanding Message Processing with Unit-of-Order. 10-1

Message Processing According to the JMS Specification . 10-2

Message Processing with Unit-of-Order . 10-2

xii Programming WebLogic JMS

Message Delivery with Unit-of-Order . 10-3

Message Unit-of-Order Case Study . 10-4

Joe Orders a Book . 10-4

What Happened to Joe’s Order . 10-5

How Message Unit-of-Order Solves the Problem . 10-6

How to Create a Unit-of-Order . 10-8

Creating a Unit-of-Order Programmatically . 10-8

Creating a Unit-of-Order Administratively . 10-9

Configuring Unit-of-Order for a Connection Factory and Destinations. 10-9

Unit-of-Order Naming Rules . 10-10

Message Unit-of-Order Advanced Topics . 10-10

What Happens When a Message Is Delayed During Processing? 10-11

What Happens When a Filter Makes a Message Undeliverable 10-11

What Happens When Destination Sort Keys are Used . 10-12

Using Unit-of-Order with Distributed Destinations. 10-12

Using the Path Service . 10-12

Using Hash-based Routing . 10-13

Configuring Routing on Uniform Distributed Destinations 10-13

Using Unit-of-Order with Topics . 10-13

Using Unit-of-Order with JMS Message Management . 10-14

Using Unit-of-Order with WebLogic Store-and-Forward 10-14

Using Unit-of-Order with WebLogic Messaging Bridge. 10-15

Limitations of Message Unit-of-Order . 10-15

11.Using Unit-of-Work Message Groups
What Are Unit-of-Work Message Groups? . 11-2

Understanding Message Processing With Unit-of-Work . 11-2

Basic UOW Terminology. 11-2

Programming WebLogic JMS xiii

Rules For Processing UOW Messages . 11-3

Message Unit-of-Work Case Study . 11-4

Jill Orders Miscellaneous Items From an Online Retailer 11-4

How Message Unit-of-Work Completes the Order. 11-5

How to Create a Unit-of-Work Message Group . 11-6

How To Write a Producer to Set UOW Message Properties 11-6

Example UOW Producer Code . 11-7

UOW Exceptions. 11-8

How to Write a UOW Consumer and/or Producer For an Intermediate Destination 11-9

Configuring Terminal Destinations . 11-10

UOW Message Routing for Terminal Distributed Destinations 11-11

How to Write a UOW Consumer For a Terminal Destination 11-11

Message Unit-of-Work Advanced Topics . 11-13

Message Property Handling . 11-13

System-Generated Properties . 11-13

Final Component Message Properties. 11-13

Component Message Heterogeneity . 11-14

ReplyTo Message Property . 11-14

UOW and Uniform Distributed Destinations . 11-14

UOW and Store-and-Forward Destinations . 11-15

Limitations of UOW Message Groups . 11-15

12.Using Transactions with WebLogic JMS
Overview of Transactions . 12-1

Using JMS Transacted Sessions . 12-2

Step 1: Set Up JMS Application, Creating Transacted Session 12-3

Step 2: Perform Desired Operations. 12-4

Step 3: Commit or Roll Back the JMS Transacted Session 12-4

xiv Programming WebLogic JMS

Using JTA User Transactions . 12-4

Step 1: Set Up JMS Application, Creating Non-Transacted Session. 12-5

Step 2: Look Up User Transaction in JNDI . 12-6

Step 3: Start the JTA User Transaction . 12-6

Step 4: Perform Desired Operations . 12-6

Step 5: Commit or Roll Back the JTA User Transaction . 12-6

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans12-7

Example: JMS and EJB in a JTA User Transaction . 12-7

13.WebLogic JMS C API
What Is the WebLogic JMS C API? . 13-1

System Requirements . 13-2

WebLogic JMS C API Code Examples . 13-3

Design Principles. 13-3

Java Objects Map to Handles. 13-3

Thread Utilization . 13-3

Exception Handling . 13-4

Type Conversions. 13-4

Integer (int) . 13-4

Long (long) . 13-4

Character (char) . 13-4

String. 13-4

Memory Allocation and Garbage Collection . 13-6

Closing Connections . 13-6

Helper Functions . 13-6

Security Considerations. 13-7

Implementation Guidelines . 13-7

Programming WebLogic JMS xv

14.Recovering from a Server Failure
Automatic JMS Client Failover . 14-2

Automatic Failover for JMS Producers . 14-3

Sample Producer Code . 14-3

Re-usable ConnectionFactory Objects . 14-4

Re-usable Destination Objects . 14-4

Reconnected Connection Objects . 14-4

Reconnected Session Objects . 14-6

Reconnected MessageProducer Objects . 14-7

Configuring Automatic Failover for JMS Consumers . 14-7

Sample Consumer Client Code . 14-8

Configuring Automatic Client Refresh Options . 14-8

Common Cases for Reconnected Consumers . 14-9

Special Cases for Reconnected Consumers . 14-11

Explicitly Disabling Automatic Failover on JMS Clients 14-13

Programmatically . 14-13

Administratively . 14-13

Limitations for Automatic JMS Client Failover. 14-14

Best Practices for JMS Clients Using Automatic Failover 14-14

Use Transactions to Group Message Work . 14-14

JMS Clients Should Always Call the close() Method. 14-15

Programming Considerations for WebLogic Server 9.0 or Earlier Failures 14-16

Migrating JMS Data to a New Server . 14-16

A. Deprecated WebLogic JMS Features
Defining Server Session Pools. .A-1

Step 1: Look Up Server Session Pool Factory in JNDI .A-3

Step 2: Create a Server Session Pool Using the Server Session Pool FactoryA-4

xvi Programming WebLogic JMS

Create a Server Session Pool for Queue Connection Consumers. A-4

Create a Server Session Pool for Topic Connection Consumers A-4

Step 3: Create a Connection Consumer . A-5

Create a Connection Consumer for Queues . A-5

Create a Connection Consumer for Topics . A-6

Example: Setting Up a PTP Client Server Session Pool . A-7

Example: Setting Up a Pub/Sub Client Server Session Pool A-9

B. FAQs: Integrating Remote JMS Providers
Understanding JMS and JNDI Terminology . B-2

Understanding Transactions . B-3

How to Integrate with a Remote Provider. B-5

Best Practices when Integrating with Remote Providers . B-7

Using Foreign JMS Server Definitions . B-8

Using EJB/Servlet JMS Resource References . B-9

Using WebLogic Store-and-Forward . B-10

Using a Messaging Bridge . B-11

Using Messaging Beans . B-12

JMS Interoperability Resources . B-14

Programming WebLogic JMS 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic
JMS.

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-3

“Samples and Tutorials for the JMS Developer” on page 1-3

“New and Changed JMS Features In This Release” on page 1-4

Document Scope and Audience
This document is a resource for software developers who want to develop and configure
applications that include WebLogic Server Java Message Service (JMS). It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server or considering the use of WebLogic Server JMS for a particular application

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning JMS topics. For links to WebLogic Server documentation and resources for these topics,
see “Related Documentation” on page 1-3.

I n t roduct i on and Roadmap

1-2 Programming WebLogic JMS

It is assumed that the reader is familiar with J2EE and JMS concepts. This document emphasizes
the value-added features provided by WebLogic Server JMS and key information about how to
use WebLogic Server features and facilities to get a JMS application up and running.

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 2, “Understanding WebLogic JMS,” provides an overview of the Java Message
Service. It also describes WebLogic JMS components and features.

Chapter 3, “Best Practices for Application Design,” provides design options for WebLogic
Server JMS, application behaviors to consider during the design process, and
recommended design patterns.

Chapter 4, “Developing a Basic JMS Application,” describes how to develop a WebLogic
JMS application.

Chapter 5, “Managing Your Applications,” describes how to programatically manage your
JMS applications using value-added WebLogic JMS features.

Chapter 6, “Using JMS Module Helper to Manage Applications,” describes how to
programatically create and manage JMS servers, Store-and-Forward Agents, and JMS
system resources.

Chapter 7, “Using Multicasting with WebLogic Server,” describes how to use Multicasting
to enable the delivery of messages to a select group of hosts that subsequently forward the
messages to subscribers.

Chapter 8, “Using Distributed Destinations,” describes how to use distributed destinations
with WebLogic JMS.

Chapter 9, “Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets,”
describes “best practice” methods that make it easier to use WebLogic JMS in conjunction
with J2EE components, like Enterprise Java Beans and Servlets.

Chapter 10, “Using Message Unit-of-Order,” describes how to use Message Unit-of-Order
to provide strict message ordering when using WebLogic JMS queues.

Chapter 12, “Using Transactions with WebLogic JMS,” describes how to use transactions
with WebLogic JMS.

Rela ted Documentat ion

Programming WebLogic JMS 1-3

Chapter 13, “WebLogic JMS C API,” provides information on how to develop C programs
that interoperate with WebLogic JMS.

Chapter 14, “Recovering from a Server Failure,” describes how to terminate a JMS
application gracefully if a server fails and how to migrate JMS data after server failure.

Appendix A, “Deprecated WebLogic JMS Features,” describes features that have been
deprecated for this release of WebLogic Server:

Related Documentation
This document contains JMS-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Configuring and Managing WebLogic JMS for information about configuring and
managing JMS resources.

Configuring and Managing WebLogic Store-and-Forward for information about the
benefits and usage of the Store-and-Forward service with WebLogic JMS.

Using the WebLogic Persistent Store for information about the benefits and usage of the
system-wide WebLogic Persistent Store.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications.

Samples and Tutorials for the JMS Developer
In addition to this document, BEA Systems provides a variety of code samples and tutorials for
JMS developers. The examples and tutorials illustrate WebLogic Server JMS in action, and
provide practical instructions on how to perform key JMS development tasks.

BEA recommends that you run some or all of the JMS examples before developing your own
JMS applications.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

http://e-docs.bea.com/wls/docs92/jms_admin/index.html
http://e-docs.bea.com/wls/docs92/saf_admin/index.html
http://e-docs.bea.com/wls/docs92/config_wls/store.html
message URL http://e-docs.bea.com/wls/docs92/deployment/index.html

I n t roduct i on and Roadmap

1-4 Programming WebLogic JMS

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work
together to process requests from web applications, web services, and workflow applications, and
future client applications. The application includes message-driven, stateless session, stateful
session, and entity EJBs.

JMS Examples in the WebLogic Server Distribution
WebLogic Server 9.2 optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server 9.2 Start menu.

Additional API examples for download at
http://codesamples.projects.dev2dev.bea.com. These examples are distributed as ZIP
files that you can unzip into an existing WebLogic Server samples directory structure.

You build and run the downloadable examples in the same manner as you would an installed
WebLogic Server example. See the download pages of individual examples for more information
at https://codesample.projects.dev2dev.bea.com.

New and Changed JMS Features In This Release
For a comprehensive listing of the new WebLogic JMS feature introduced in release 9.2, see New
and Changed JMS Features In This Release in Configuring and Managing WebLogic JMS.

https://codesamples.projects.dev2dev.bea.com/
http://e-docs.bea.com/wls/docs92/jms_admin/intro.html#WhatsNewJMS
http://e-docs.bea.com/wls/docs92/jms_admin/intro.html#WhatsNewJMS

Programming WebLogic JMS 2-1

C H A P T E R 2

Understanding WebLogic JMS

These sections briefly review the different Java Message Service (JMS) concepts and features,
and describe how they work with other application objects and WebLogic Server.

It is assumed the reader is familiar with Java programming and JMS 1.1 concepts and features.

“Overview of the Java Message Service and WebLogic JMS” on page 2-1

“Understanding the Messaging Models” on page 2-4

“Value-Added Public JMS API Extensions” on page 2-7

“Understanding the JMS API” on page 2-9

Overview of the Java Message Service and WebLogic JMS
WebLogic JMS is an enterprise-class messaging system that is tightly integrated into the
WebLogic Server platform. It fully supports the JMS Specification and also provides numerous
WebLogic JMS Extensions that go above and beyond the standard JMS APIs.

What Is the Java Message Service?
An enterprise messaging system enables applications to communicate with one another through
the exchange of messages. A message is a request, report, and/or event that contains information
needed to coordinate communication between different applications. A message provides a level
of abstraction, allowing you to separate the details about the destination system from the
application code.

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html

Unders tanding WebLog ic JMS

2-2 Programming WebLogic JMS

The Java Message Service (JMS) is a standard API for accessing enterprise messaging systems.
Specifically, JMS:

Enables Java applications sharing a messaging system to exchange messages

Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

The following figure illustrates WebLogic JMS messaging.

Figure 2-1 WebLogic JMS Messaging

As illustrated in the figure, WebLogic JMS accepts messages from producer applications and
delivers them to consumer applications.

Implementation of Java Specifications
WebLogic Server is compliant with the following Java specifications.

J2EE Specification
WebLogic Server is compliant with the Sun Microsystems J2EE 1.4 specification.

JMS Specification
WebLogic Server is fully compliant with the JMS 1.1 Specification and can be used in
production.

WebLogic JMS Architecture
The following figure illustrates the WebLogic JMS architecture.

http://java.sun.com/products/jms/docs.html

Overv iew o f the Java Message Se rv i ce and WebLog ic JMS

Programming WebLogic JMS 2-3

Figure 2-2 WebLogic JMS Architecture

Major Components
The major components of the WebLogic JMS Server architecture, as illustrated in Figure 2-2,
include:

JMS servers that can host a defined set of modules and any associated persistent storage
that reside on a WebLogic Server instance.

JMS modules contains configuration resources (such as queues, topics, and connections
factories) and are defined by XML documents that conform to the weblogic-jmsmd.xsd
schema.

 Where: A1 and B1 are connection factories and B2 is a queue.

Unders tanding WebLog ic JMS

2-4 Programming WebLogic JMS

Client JMS applications that either produce messages to destinations or consume messages
from destinations.

JNDI (Java Naming and Directory Interface), which provides a resource lookup facility.

WebLogic persistent storage (file store or JDBC-accessible) for storing persistent message
data.

Understanding the Messaging Models
JMS supports two messaging models: point-to-point (PTP) and publish/subscribe (pub/sub). The
messaging models are very similar, except for the following differences:

PTP messaging model enables the delivery of a message to exactly one recipient.

Pub/sub messaging model enables the delivery of a message to multiple recipients.

Each model is implemented with classes that extend common base classes. For example, the PTP
class javax.jms.Queue and the pub/sub class javax.jms.Topic both extend the class
javax.jms.Destination.

Each message model is described in detail in the following sections.

Note: The terms producer and consumer are used as generic descriptions of applications that
send and receive messages, respectively, in either messaging model. For each specific
messaging model, however, unique terms specific to that model are used when referring
to producers and consumers.

Point-to-Point Messaging
The point-to-point (PTP) messaging model enables one application to send a message to another.
PTP messaging applications send and receive messages using named queues. A queue sender
(producer) sends a message to a specific queue. A queue receiver (consumer) receives messages
from a specific queue.

The following figure illustrates PTP messaging.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Queue.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Topic.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Unders tand ing the Messaging Mode ls

Programming WebLogic JMS 2-5

Figure 2-3 Point-to-Point (PTP) Messaging

Multiple queue senders and queue receivers can be associated with a single queue, but an
individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebLogic JMS determines
which one will receive the next message on a first come, first serve basis. If no queue receivers
are listening on the queue, messages remain in the queue until a queue receiver attaches to the
queue.

Publish/Subscribe Messaging
The publish/subscribe (pub/sub) messaging model enables an application to send a message to
multiple applications. Pub/sub messaging applications send and receive messages by subscribing
to a topic. A topic publisher (producer) sends messages to a specific topic. A topic subscriber
(consumer) retrieves messages from a specific topic.

The following figure illustrates pub/sub messaging.

Unders tanding WebLog ic JMS

2-6 Programming WebLogic JMS

Figure 2-4 Publish/Subscribe (Pub/Sub) Messaging

Unlike with the PTP messaging model, the pub/sub messaging model allows multiple topic
subscribers to receive the same message. JMS retains the message until all topic subscribers have
received it.

The Pub/Sub messaging model supports durable subscribers, allowing you to assign a name to a
topic subscriber and associate it with a user or application. For more information about durable
subscribers, see “Setting Up Durable Subscriptions” on page 5-21.

Message Persistence
As per the “Message Delivery Mode” section of the JMS Specification, messages can be
specified as persistent or non-persistent:

A persistent message is guaranteed to be delivered once-and-only-once. The message
cannot be lost due to a JMS provider failure and it must not be delivered twice. It is not
considered sent until it has been safely written to a file or database. WebLogic JMS writes
persistent messages to a WebLogic persistent store (disk-base file or JDBC-accessible
database) that is optionally targeted by each JMS server during configuration.

Non-persistent messages are not stored. They are guaranteed to be delivered at-most-once,
unless there is a JMS provider failure, in which case messages may be lost, and must not
be delivered twice. If a connection is closed or recovered, all non-persistent messages that
have not yet been acknowledged will be redelivered. Once a non-persistent message is
acknowledged, it will not be redelivered.

For information about using the system-wide, WebLogic Persistent Store, see Using the
WebLogic Persistent Store.

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs92/config_wls/store.html
http://e-docs.bea.com/wls/docs92/config_wls/store.html

Value-Added Publ i c JMS AP I Ex tens ions

Programming WebLogic JMS 2-7

Value-Added Public JMS API Extensions
WebLogic JMS is tightly integrated into the WebLogic Server platform, allowing you to build
highly-secure J2EE applications that can be easily monitored and administered through the
WebLogic Server console. In addition to fully supporting XA transactions, WebLogic JMS also
features high availability through its clustering and service migration features, while also
providing seamless interoperability with other versions of WebLogic Server and third-party
messaging providers.

For a detailed listing of these value-added features, see “WebLogic Server Value-Added JMS
Features” in Configuring and Managing WebLogic JMS.

WebLogic Server Value-Added JMS Features
In addition to the standard JMS APIs specified by the JMS Specification, WebLogic Server
provides numerous weblogic.jms.extensions APIs, which includes the classes and methods
described in the following table.

Table 2-1 WebLogic JMS Public API Extensions

Interface/Class Function

ConsumerInfo,

DestinationInfo

Provides consumer and destination information to
management clients in CompositeData format.

JMSMessageFactoryImpl,

WLMessageFactory

Provides a factory and methods to:
• Create JMS messages
• Create JMS bytes messages
• Create JMS map messages
• Creating JMS object messages
• Creating JMS stream messages
• Creating JMS text messages
• Creating JMS XML messages

JMSMessageInfo Provide browsing and message manipulation using JMX.

JMSModuleHelper,

JMSNamedEntityModifier

Monitors JMS runtime MBeans and manages JMS Module
configuration entities in a JMS module.

JMSRuntimeHelper Monitors JMS runtime JMX MBeans.

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ConsumerInfo.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/DestinationInfo.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSMessageFactoryImpl.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLMessageFactory.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSMessageInfo.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSNamedEntityModifier.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSRuntimeHelper.html
http://e-docs.bea.com/wls/docs92/jms_admin/intro.html#jms_features
http://e-docs.bea.com/wls/docs92/jms_admin/intro.html#jms_features
http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html

Unders tanding WebLog ic JMS

2-8 Programming WebLogic JMS

This API also supports NO_ACKNOWLEDGE and MULTICAST_NO_ACKNOWLEDGE acknowledge
modes, and extended exceptions, including throwing an exception:

MDBTransaction Associates a message delivered to a MDB (message-driven
bean) with a transaction.

WLDestination Determines if a destination is a queue or a topic.

WLMessage Sets a delivery time for messages, redelivery limits, and send
timeouts.

WLMessageProducer Sets a message delivery times for producers and
Unit-of-Order names.

WLQueueSession,

WLSession,

WLTopicSession

Provides additional fields and methods that are not supported
by javax.jms.QueueSession, javax.jms.Session,
and javax.jms.TopicSession.

XMLMessage Creates XML messages.

Schedule Sets a scheduled delivery times for messages.

JMSHelper Monitors JMS runtime MBeans.

Deprecated in this release of WebLogic Server. Replaced by
JMSModuleHelper.

ServerSessionPoolFactory,

ServerSessionPoolListener

Provides interfaces for creating server session pools and
message listeners.

Note: Session pool configuration objects are
deprecated for this release of WebLogic Server.
They are not a required part of the J2EE
specification, do not support JTA user
transactions, and are largely superseded by
message-driven beans (MDBs), which are a
required part of J2EE. For more information on
designing MDBs, see “Message-Driven EJBs”
in Programming WebLogic Enterprise
JavaBeans.

Table 2-1 WebLogic JMS Public API Extensions

Interface/Class Function

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/MDBTransaction.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLDestination.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLMessage.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLMessageProducer.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLQueueSession.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/XMLMessage.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/Schedule.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSHelper.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ServerSessionPoolListener.html
http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-9

To the session exception listener (if set), when one of its consumers has been closed by the
server as a result of a server failure, or administrative intervention.

From a multicast session when the number of messages received by the session, but not yet
delivered to the message listener, exceeds the maximum number of messages allowed for
that session.

From a multicast consumer when it detects a sequence gap (message received out of
sequence) in the data stream.

Understanding the JMS API
To create a JMS applications, use the javax.jms API. The API allows you to create the class
objects necessary to connect to the JMS, and send and receive messages. JMS class interfaces are
created as subclasses to provide queue- and topic-specific versions of the common parent classes.

The following table lists the JMS classes described in more detail in subsequent sections. For a
complete description of all JMS classes, see the javax.jms or weblogic.jms.extensions
Javadoc.

Table 2-2 WebLogic JMS Classes

JMS Class Description

ConnectionFactory Encapsulates connection configuration information. A
connection factory is used to create connections. You look
up a connection factory using JNDI.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced and
consumed.

Destination Identifies a queue or topic, encapsulating the address of a
specific provider. Queue and topic destinations manage
the messages delivered from the PTP and pub/sub
messaging models, respectively.

MessageProducer and
MessageConsumer

Provides the interface for sending and receiving
messages. Message producers send messages to a queue
or topic. Message consumers receive messages from a
queue or topic.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html

Unders tanding WebLog ic JMS

2-10 Programming WebLogic JMS

For information about configuring JMS resources, see “Configuring JMS System Resources” in
Configuring and Managing WebLogic JMS. The procedure for setting up a JMS application is
presented in “Setting Up a JMS Application” on page 4-2.

ConnectionFactory
A ConnectionFactory encapsulates connection configuration information, and enables JMS
applications to create a Connection. A connection factory supports concurrent use, enabling
multiple threads to access the object simultaneously. You can use the preconfigured default
connection factories provided by WebLogic JMS, or you can configure one or more connection
factories to create connections with predefined attributes that suit your application.

Using the Default Connection Factories
WebLogic JMS defines two default connection factories, which you can look up using the
following JNDI names:

weblogic.jms.ConnectionFactory

weblogic.jms.XAConnectionFactory

Message Encapsulates information to be sent or received.

ServerSessionPoolFacto

ry1
Encapsulates configuration information for a
server-managed pool of message consumers. The server
session pool factory is used to create server session pools.

ServerSessionPool2 Provides a pool of server sessions that can be used to
process messages concurrently for connection consumers.

ServerSession3 Associates a thread with a JMS session.

ConnectionConsumer4 Specifies a consumer that retrieves server sessions to
process messages concurrently.

1. Supports an optional JMS interface for processing multiple messages concurrently.
2. Supports an optional JMS interface for processing multiple messages concurrently.
3. Supports an optional JMS interface for processing multiple messages concurrently.
4. Supports an optional JMS interface for processing multiple messages concurrently.

Table 2-2 WebLogic JMS Classes

JMS Class Description

http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-11

You only need to create a user-defined a connection factory if the settings of the default factories
are not suitable for your application. The main difference between the preconfigured settings for
the default connection factories is the default value for the “XA Connection Factory Enabled”
attribute which is used to enable JTA transactions, as shown in the following table.

An XA factory is required for JMS applications to use JTA user-transactions, but is not required
for transacted sessions. For more information about using transactions with WebLogic JMS, see
Chapter 12, “Using Transactions with WebLogic JMS.”

All other default factory configuration attributes are set to the same default values as a
user-defined connection factory.

For more information about the XA Connection Factory Enabled attribute, and to see the default
values for the other connection factory attributes, see “JMS Connection Factory: Configuration:
Transactions” in the Administration Console Online Help.

Another distinction when using the default connection factories is that you have no control over
targeting the WebLogic Server instances where the connection factory may be deployed.
However, you can disable the default connection factories on a per-server basis.

For more information on enabling or disabling the default connection factories, see “Servers:
Configuration: Services” in the Administration Console Online Help.

To deploy a connection factory on specific independent servers, on specific servers within a
cluster, or on an entire cluster, you must configure a new connection factory and specify the
appropriate target, as explained in “Configuring and Deploying Connection Factories” on
page 2-12.

Note: For backwards compatibility, WebLogic JMS still supports two deprecated default
connection factories. The JNDI names for these factories are:
javax.jms.QueueConnectionFactory and
javax.jms.TopicConnectionFactory.

Table 2-3 XA Transaction(al) Settings for Default Connection Factories

Default Connection Factory. . . XA Connection Factory Enabled setting is. . .

weblogic.jms.ConnectionFactory False

weblogic.jms.XAConnectionFactory True

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigtransactionparamstitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigtransactionparamstitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreserverserverconfigservicestitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreserverserverconfigservicestitle.html

Unders tanding WebLog ic JMS

2-12 Programming WebLogic JMS

Configuring and Deploying Connection Factories
A system administrator can define and configure one or more connection factories to create
connections with predefined attributes and WebLogic Server will add them to the JNDI space
during startup. The application then retrieves a connection factory using WebLogic JNDI. Any
user-defined connection factories must be uniquely named.

For information on configuring connection factories, see “Configure connection factories” in the
Administration Console Online Help.

A system administrator establishes cluster-wide, transparent access to JMS destinations from any
server in the cluster by targeting to the cluster or by targeting to one or more server instances in
the cluster. This way, each connection factory can be deployed on multiple WebLogic Server
instances. For more information on JMS clustering, refer to “Configuring Clustered WebLogic
JMS Resources” in Configuring and Managing WebLogic JMS.

The ConnectionFactory Class
The ConnectionFactory class does not define methods; however, its subclasses define methods
for the respective messaging models. A connection factory supports concurrent use, enabling
multiple threads to access the object simultaneously.

Note: For this release, you can use the JMS Version 1.1 specification connection factories or
you can choose to use the subclasses.

The following table describes the ConnectionFactory subclasses.

To learn how to use the ConnectionFactory class within an application, see “Developing a
Basic JMS Application” on page 4-1, or the javax.jms.ConnectionFactory Javadoc.

Table 2-4 ConnectionFactory Subclasses

Subclass. . . In Messaging
Model. . .

Is Used to Create. . .

QueueConnectionFactor
y

PTP QueueConnection to a JMS PTP provider.

TopicConnectionFactor
y

Pub/Sub TopicConnection to a JMS Pub/Sub
provider.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionFactory.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-13

Connection
A Connection represents an open communication channel between an application and the
messaging system, and is used to create a Session for producing and consuming messages. A
connection creates server-side and client-side objects that manage the messaging activity
between an application and JMS. A connection may also provide user authentication.

A Connection is created by a ConnectionFactory, obtained through a JNDI lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In the
WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the client
connection to the server. No additional TCP/IP connections are created for JMS. Servlets and
other server-side objects may also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and when to start
a stopped connection, see “Starting, Stopping, and Closing a Connection” on page 5-13.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

Note: For this release, you can use the JMS Version 1.1 specification connection objects or you
can choose to use the subclasses.

The following table describes the Connection subclasses.

To learn how to use the Connection class within an application, see “Developing a Basic JMS
Application” on page 4-1, or the javax.jms.Connection Javadoc.

Table 2-5 Connection Subclasses

Subclass. . . In Messaging
Model. . .

Is Used to Create. . .

QueueConnection PTP QueueSessions, and consists of a connection to a JMS
PTP provider created by QueueConnectionFactory.

TopicConnection Pub/sub TopicSessions, and consists of a connection to a JMS
pub/sub provider created by
TopicConnectionFactory.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Connection.html

Unders tanding WebLog ic JMS

2-14 Programming WebLogic JMS

Session
A Session object defines a serial order for the messages produced and consumed, and can create
multiple message producers and message consumers. The same thread can be used for producing
and consuming messages. If an application wants to have a separate thread for producing and
consuming messages, the application should create a separate session for each function.

A Session is created by a Connection.

WebLogic JMS Session Guidelines
The JMS 1.1 Specification allows for a generic session to have a MessageConsumer for any type
of Destination object. However, WebLogic JMS does not support having both types of
MessageConsumer (QueueConsumer and TopicSubscriber) for a single session. In addition,
having multiple consumers for a single session is not a common practice. The following
commonly-used scenarios are supported, however:

Using a single session with both a QueueSender and a TopicSubscriber (and vice-versa:
QueueConsumer and TopicPublisher).

Multiple MessageProducers of any type.

Caution: A session and its message producers and consumers can only be accessed by one
thread at a time. Their behavior is undefined if multiple threads access them
simultaneously.

Session Subclasses
The following table describes the Session subclasses.

Table 2-6 Session Subclasses

Subclass. . . In Messaging
Model. . .

Provides a Context for. . .

QueueSession PTP Producing and consuming messages for a JMS PTP
provider. Created by QueueConnection.

TopicSession Pub/sub Producing and consuming messages for a JMS pub/sub
provider. Created by TopicConnection.

http://java.sun.com/products/jms/docs.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-15

To learn how to use the Session class within an application, see “Developing a Basic JMS
Application” on page 4-1, or the javax.jms.Session and
weblogic.jms.extensions.WLSession javadocs.

Non-Transacted Session
In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in the following table.

Table 2-7 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it.

CLIENT_ACKNOWLEDGE The Session object relies on the application to call an acknowledge
method on a received message. Once the method is called, the session
acknowledges all messages received since the last acknowledge.

This mode allows an application to receive, process, and acknowledge
a batch of messages with one call.

Note: In the Administration Console, if the Acknowledge Policy
attribute on the connection factory is set to Previous, but
you want to acknowledge all received messages for a given
session, then use the last message to invoke the acknowledge
method.

For more information on the Acknowledge Policy attribute, see “JMS
Connection Factory: Configuration: General” in the
Administration Console Online Help.

DUPS_OK_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it;
duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application cannot
handle duplicate messages. Duplicate messages may be sent
if an initial attempt to deliver a message fails.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfiggeneraltitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfiggeneraltitle.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html

Unders tanding WebLog ic JMS

2-16 Programming WebLogic JMS

Transacted Session
In a transacted session, only one transaction is active at any given time. Any number of messages
sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an application
commits a transaction, all the messages that the application received during the transaction are
acknowledged by the messaging system and messages it sent are accepted for delivery. If an
application rolls back a transaction, the messages that the application received during the
transaction are not acknowledged and messages it sent are discarded.

NO_ACKNOWLEDGE No acknowledge is required. Messages sent to a NO_ACKNOWLEDGE
session are immediately deleted from the server. Messages received in
this mode are not recovered, and as a result messages may be lost
and/or duplicate message may be delivered if an initial attempt to
deliver a message fails.

This mode is supported for applications that do not require the quality
of service provided by session acknowledge, and that do not want to
incur the associated overhead.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

MULTICAST_NO_ACKNOWLEDGE Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session share
the same characteristics as NO_ACKNOWLEDGE mode, described
previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided by
session acknowledge. For more information on multicasting, see
“Using Multicasting with WebLogic Server” on page 7-1.

Note: Use only with topics. You should avoid using this mode if
your application cannot handle lost or duplicate messages.
Duplicate messages may be sent if an initial attempt to
deliver a message fails.

Table 2-7 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode Description

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-17

JMS can participate in distributed transactions with other Java services, such as EJB, that use the
Java Transaction API (JTA). Transacted sessions do not support this capability as the transaction
is restricted to accessing the messages associated with that session. For more information about
using JMS with JTA, see “Using JTA User Transactions” on page 12-4.

Destination
A Destination object can be either a queue or topic, encapsulating the address syntax for a
specific provider. The JMS specification does not define a standard address syntax due to the
variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the destination and the
WebLogic Server adds it to the JNDI space during startup. Applications can also create
temporary destinations that exist only for the duration of the JMS connection in which they are
created.

Note: Administrators can also configure a distributed destination, which is a single set of
destinations (queues or topics) that are accessible as a single, logical destination to a
client. For more information, see “Distributed Destinations” on page 2-18.

On the client side, Queue and Topic objects are handles to the object on the server. Their methods
only return their names. To access them for messaging, you create message producers and
consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JMS Queues and Topics extend javax.jms.Destination.

Note: For this release, you can use the JMS Version 1.1 specification destination objects or you
can choose to use the subclasses.

The following table describes the Destination subclasses.

Table 2-8 Destination Subclasses

Subclass Messaging
Model

Manages Messages for

Queue PTP JMS point-to-point provider.

TemporaryQueue PTP JMS point-to-point provider, and exists for the duration of
the JMS connection in which the messages are created. A
temporary queue can be consumed only by the queue
connection that created it.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Unders tanding WebLog ic JMS

2-18 Programming WebLogic JMS

Note: An application has the option of browsing queues by creating a QueueBrowser object in
its queue session. This object produces a snapshot of the messages in the queue at the
time the queue browser is created. The application can view the messages in the queue,
but the messages are not considered read and are not removed from the queue. For more
information about browsing queues, see “Setting and Browsing Message Header and
Property Fields” on page 5-26.

To learn how to use the Destination class within an application, see “Developing a Basic JMS
Application” on page 4-1, or the javax.jms.Destination Javadoc.

Distributed Destinations
A distributed destination resource is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client (for example, a distributed topic has its own
JNDI name). The members of the set are typically distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server. Applications that use a distributed
destination are more highly available than applications that use standalone destinations because
WebLogic JMS provides load balancing and failover for the members of a distributed destination
in a cluster.

For more information on using a distributed destination with your applications, see “Using
Distributed Destinations” on page 8-1.

For instructions on configuring a distributed queue destination, see “Configure uniform
distributed queues” in the Administration Console Online Help.

For instructions on configuring a distributed topic destination, see “Configure uniform
distributed topics” in the Administration Console Online Help.

Topic Pub/sub JMS pub/sub provider.

TemporaryTopic Pub/sub JMS pub/sub provider, and exists for the duration of the JMS
connection in which the messages are created. A temporary
topic can be consumed only by the topic connection that
created it.

Table 2-8 Destination Subclasses (Continued)

Subclass Messaging
Model

Manages Messages for

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureDistributedQueues.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureDistributedQueues.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureDistributedTopics.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureDistributedTopics.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-19

MessageProducer and MessageConsumer
A MessageProducer sends messages to a queue or topic. A MessageConsumer receives
messages from a queue or topic. Message producers and consumers operate independently of one
another. Message producers generate and send messages regardless of whether a message
consumer has been created and is waiting for a message, and vice versa.

A Session creates the MessageProducers and MessageConsumers that are attached to queues
and topics.

The message sender and receiver objects are created as subclasses of the MessageProducer and
MessageConsumer classes.

Note: For this release, you can use the JMS Version 1.1 specification message producer and
consumer objects or you can choose to use the subclasses.

The following table describes the MessageProducer and MessageConsumer subclasses.

The PTP model, as shown in the figure “Point-to-Point (PTP) Messaging” on page 2-5, allows
multiple sessions to receive messages from the same queue. However, a message can only be
delivered to one queue receiver. When there are multiple queue receivers, WebLogic JMS defines
the next queue receiver that will receive a message on a first-come, first-serve basis.

The pub/sub model, as shown in the figure “Publish/Subscribe (Pub/Sub) Messaging” on
page 2-6, allows messages to be delivered to multiple topic subscribers. Topic subscribers can be
durable or non-durable, as described in “Setting Up Durable Subscriptions” on page 5-21.

An application can use the same JMS connection to both publish and subscribe to a single topic.
Because topic messages are delivered to all subscribers, an application can receive messages it
has published itself. To prevent clients from receiving messages that they publish, a JMS

Table 2-9 MessageProducer and MessageConsumer Subclasses

Subclass In Messaging
Model

Performs the Following Function

QueueSender PTP Sends messages for a JMS point-to-point provider.

QueueReceiver PTP Receives messages for a JMS point-to-point provider.

TopicPublisher Pub/sub Sends messages for a JMS pub/sub provider.

TopicSubscriber Pub/sub Receives messages for a JMS pub/sub provider.

Unders tanding WebLog ic JMS

2-20 Programming WebLogic JMS

application can set a noLocal attribute on the topic subscriber, as described in “Step 5: Create
Message Producers and Message Consumers Using the Session and Destinations” on page 4-9.

To learn how to use the MessageProducer and MessageConsumer classes within an application,
see “Setting Up a JMS Application” on page 4-2, or the javax.jms.MessageProducer and
javax.jms.MessageConsumer javadocs.

Message
A Message encapsulates the information exchanged by applications. This information includes
three components:

“Message Header Fields” on page 2-20

“Message Property Fields” on page 2-25

“Message Body” on page 2-26

Message Header Fields
Every JMS message contains a standard set of header fields that is included by default and
available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see “Setting and Browsing Message Header
and Property Fields” on page 5-26, or to the javax.jms.Message Javadoc.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-21

The following table describes the fields in the message headers and shows how values are defined
for each field.

Unders tanding WebLog ic JMS

2-22 Programming WebLogic JMS

Table 2-10 Message Header Fields

Field Description Defined by

JMSCorrelationID Specifies one of the following: a WebLogic JMSMessageID
(described later in this table), an application-specific string, or a
byte[] array. The JMSCorrelationID is used to correlate
messages and is set directly on the message by the application
before send().

There are two common applications for this field.

The first application is to link messages by setting up a
request/response scheme, as follows:
1. When an application sends a message, it stores the

JMSMessageID value assigned to it.
2. When an application receives the message, it copies the

JMSMessageID into the JMSCorrelationID field of a
response message that it sends back to the sending
application.

The second application is to use the JMSCorrelationID field
to carry any String you choose, enabling a series of messages to
be linked with some application-determined value.

Application

JMSDeliveryMode Specifies PERSISTENT or NON_PERSISTENT messaging.
This field is set on the producer or as parameter sent by the
application before send().

When a persistent message is sent, it is stored in the WebLogic
Persistent Store. The send() operation is not considered
successful until delivery of the message can be guaranteed. A
persistent message is guaranteed to be delivered at least once.

WebLogic JMS does not store non-persistent messages in the
persistent store. This mode of operation provides the lowest
overhead. They are guaranteed to be delivered at least once
unless there is a system failure, in which case messages may be
lost. If a connection is closed or recovered, all non-persistent
messages that have not yet been acknowledged will be
redelivered. Once a non-persistent message is acknowledged, it
will not be redelivered.

This value is overwritten by a call to producer.send(),
setting this value directly on the message has no effect. The
values set by the producer can be queried using the message
supplied to producer.send() or when the message is
received by a consumer.

send() method

http://e-docs.bea.com/wls/docs92/config_wls/store.html
http://e-docs.bea.com/wls/docs92/config_wls/store.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-23

JMSDeliveryTime Defines the earliest absolute time at which a message can be
delivered to a consumer. This field is set by the application
before send() and depends on timeToDeliver, which is set
on the producer.

This field can be used to sort messages in a destination and to
select messages. For purposes of data type conversion, the
JMSDeliveryTime is a long integer.

send() method

JMSDestination Specifies the destination (queue or topic) to which the message
is to be delivered. This field is set when creating producer or as
parameter sent by the application before send().

This value is overwritten by a call to producer.send(),
setting this value directly on the message has no effect. The
values set by the producer can be queried using the message
supplied to producer.send() or when the message is
received by a consumer. When a message is received, its
destination value must be equivalent to the value assigned when
it was sent.

send() method

JMSExpiration Specifies the expiration, or time-to-live value, for a message.
This field is set by the application before send(). Depends on
timeToLive, which is set on the producer or as a parameter
sent by the application to send().

WebLogic JMS calculates the JMSExpiration value as the
sum of the application’s time-to-live and the current GMT. If the
application specifies time-to-live as 0, JMSExpiration is set
to 0, which means the message never expires.

WebLogic JMS removes expired messages from the system to
prevent their delivery.

send() method

JMSMessageID Contains a string value that uniquely identifies each message
sent by a JMS Provider.This field is set internally by send().

All JMSMessageIDs start with an ID: prefix.

This value is overwritten by a call to producer.send(),
setting this value directly on the message has no effect. The
values set by the producer can be queried using the message
supplied to producer.send() or when the message is
received by a consumer. When the message is received, it
contains a provider-assigned value.

send() method

Table 2-10 Message Header Fields (Continued)

Field Description Defined by

Unders tanding WebLog ic JMS

2-24 Programming WebLogic JMS

JMSPriority Specifies the priority level. This field is set on the producer or as
parameter sent by the application before send().

JMS defines ten priority levels, 0 to 9, 0 being the lowest
priority. Levels 0-4 indicate gradations of normal priority, and
level 5-9 indicate gradations of expedited priority.

When the message is received, it contains the value specified by
the method sending the message.

You can sort destinations by priority by configuring a
destination key, as described in “Configure destination keys” in
the Administration Console Online Help.

send() method

JMSRedelivered Specifies a flag set when a message is redelivered because no
acknowledge was received. This flag is of interest to a receiving
application.

If set, the flag indicates that JMS may have delivered the
message previously because one of the following is true:
• The application has already received the message, but did

not acknowledge it.
• The session's recover() method was called to restart the

session beginning after the last acknowledged message. For
more information about the recover() method, see
“Recovering Received Messages” on page 4-31.

WebLogic JMS

JMSReplyTo Specifies a queue or topic to which reply messages should be
sent. This field is set directly on the message by the application
before send().

This feature can be used with the JMSCorrelationID header
field to coordinate request/response messages.

Simply setting the JMSReplyTo field does not guarantee a
response; it simply enables the receiving application to respond.

Application

Table 2-10 Message Header Fields (Continued)

Field Description Defined by

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-25

Message Property Fields
The property fields of a message contain header fields added by the sending application. The
properties are standard Java name/value pairs. Property names must conform to the message
selector syntax specifications defined in the javax.jms.Message Javadoc. The following values
are valid: boolean, byte, double, float, int, long, short, and String.

WebLogic Server supports the use of the following JMS (JMSX) defined properties as defined in
the JMS 1.1. Specification:

JMSTimestamp Contains the time at which the message was sent. WebLogic
JMS writes the timestamp in the message when it accepts the
message for delivery, not when the application sends the
message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

WebLogic JMS

JMSType Specifies the message type identifier (String) set directly on the
message by the application before send().

The JMS specification allows some flexibility with this field in
order to accommodate diverse JMS providers. Some messaging
systems allow application-specific message types to be used.
For such systems, the JMSType field could be used to hold a
message type ID that provides access to the stored type
definitions.

WebLogic JMS does not restrict the use of this field.

Application

Table 2-10 Message Header Fields (Continued)

Field Description Defined by

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/products/jms/docs.html

Unders tanding WebLog ic JMS

2-26 Programming WebLogic JMS

Although message property fields may be used for application-specific purposes, JMS provides
them primarily for use in message selectors. You determine how the JMS properties are used in
your environment. You may choose to include them in some messages and omit them from others
depending upon your processing criteria. For more information, see:

“Setting and Browsing Message Header and Property Fields” on page 5-26

“Filtering Messages” on page 5-34

 JMS 1.1. Specification

Message Body
A message body contains the content being delivered from producer to consumer.

Table 2-11 JMSX Property

Type Description

JMSXUserID System generated property that identifies the user sending the
message. See “Configure connection factory security parameters” in
the Administration Console Online Help and Message ID
Propagation Security Enhancement in Configuring and Managing
WebLogic JMS.

JMSXDeliveryCount System generated property that specifies the number of message
delivery attempts where first attempt is 1.

JMSXGroupID Identity of the message group.

JMSXGroupSeq Sequence number of a message within a group.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureSecurityParams.html
http://e-docs.bea.com/wls/docs92/jms_admin/intro.html#JMSXUserID
http://e-docs.bea.com/wls/docs92/jms_admin/intro.html#JMSXUserID
http://java.sun.com/products/jms/docs.html

Unders tand ing the JMS AP I

Programming WebLogic JMS 2-27

The following table describes the types of messages defined by JMS. All message types extend
javax.jms.Message, which consists of message headers and properties, but no message body.

For more information, see the javax.jms.Message Javadoc. For more information about the
access methods and, if applicable, the conversion charts associated with a particular message
type, see the Javadoc for that message type.

ServerSessionPoolFactory
Note: Session pool and connection consumer configuration objects are deprecated in this

release of WebLogic Server. They are not a required part of the J2EE specification, do
not support JTA user transactions, and are largely superseded by message-driven beans
(MDBs), which are simpler, easier to manage, and more capable. For more information
on designing MDBs, see “Message-Driven EJBs” in Programming WebLogic Enterprise
JavaBeans.

A server session pool is a WebLogic-specific JMS feature that enables you to process messages
concurrently. A server session pool factory is used to create a server-side ServerSessionPool.

Table 2-12 JMS Message Types

Type Description

javax.jms.BytesMessage Stream of uninterpreted bytes, which must be understood by the sender and
receiver. The access methods for this message type are stream-oriented
readers and writers based on java.io.DataInputStream and
java.io.DataOutputStream.

javax.jms.MapMessage Set of name/value pairs in which the names are strings and the values are
Java primitive types. Pairs can be read sequentially or randomly, by
specifying a name.

javax.jms.ObjectMessage Single serializable Java object.

javax.jms.StreamMessage Similar to a BytesMessage, except that only Java primitive types are written
to or read from the stream.

javax.jms.TextMessage Single String. The TextMessage can also contain XML content.

weblogic.jms.extensions.XMLMe
ssage

XML content. Use of the XMLMessage type facilitates message filtering,
which is more complex when performed on XML content shipped in a
TextMessage.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/BytesMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MapMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ObjectMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/StreamMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TextMessage.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/XMLMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

Unders tanding WebLog ic JMS

2-28 Programming WebLogic JMS

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, where <name>
specifies the name of the JMS server to which the session pool is created. The WebLogic Server
adds the default server session pool factory to the JNDI space during startup and the application
subsequently retrieves the server session pool factory using WebLogic JNDI.

To learn how to use the server session pool factory within an application, see “Defining Server
Session Pools” on page A-1, or the
weblogic.jms.extnesions.ServerSessionPoolFactory Javadoc.

ServerSessionPool
A ServerSessionPool application server object provides a pool of server sessions that
connection consumers can retrieve in order to process messages concurrently.

A ServerSessionPool is created by the ServerSessionPoolFactory object obtained
through a JNDI lookup.

To learn how to use the server session pool within an application, see “Defining Server Session
Pools” on page A-1, or the javax.jms.ServerSessionPool Javadoc.

ServerSession
A ServerSession application server object enables you to associate a thread with a JMS session
by providing a context for creating, sending, and receiving messages.

A ServerSession is created by a ServerSessionPool object.

To learn how to use the server session within an application, see “Defining Server Session Pools”
on page A-1, or the javax.jms.ServerSession Javadoc.

ConnectionConsumer
A ConnectionConsumer object uses a server session to process received messages. If message
traffic is heavy, the connection consumer can load each server session with multiple messages to
minimize thread context switching.

A ConnectionConsumer is created by a Connection object.

To learn how to use the connection consumers within an application, see “Defining Server
Session Pools” on page A-1, or the javax.jms.ConnectionConsumer Javadoc.

Note: Connection consumer listeners run on the same JVM as the server.

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ServerSessionPool.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ServerSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Programming WebLogic JMS 3-1

C H A P T E R 3

Best Practices for Application Design

These sections discuss design options for WebLogic Server JMS, application behaviors to
consider during the design process, and recommended design patterns.

“Message Design” on page 3-1

“Message Compression” on page 3-2

“Message Properties and Message Header Fields” on page 3-3

“Message Ordering” on page 3-3

“Topics vs. Queues” on page 3-4

“Asynchronous vs. Synchronous Consumers” on page 3-4

“Persistent vs. Non-Persistent Messages” on page 3-5

“Deferring Acknowledges and Commits” on page 3-6

“Using AUTO_ACK for Non-Durable Subscribers” on page 3-7

“Alternative Qualities of Service, Multicast and No-Acknowledge” on page 3-7

“Avoid Multi-threading” on page 3-8

Message Design
This section provides information on how to design messages improve messaging performance:

Best P ract ices fo r App l icat i on Des ign

3-2 Programming WebLogic JMS

Serializing Application Objects
The CPU cost of serializing Java objects can be significant. This expense, in turn, affects JMS
Object messages. You can offset this cost, to some extent, by having application objects
implement java.io.Externalizable, but there still will be significant overhead in
marshalling the class descriptor. To avoid the cost of having to write the class descriptors of
additional objects embedded in an Object message, have these objects implement
Externalizable, and call readExternal and writeExternal on them directly. For example,
call obj.writeExternal(stream) rather than stream.writeObject(obj). Using Bytes and
Stream messages is generally a preferred practice.

Serializing strings
Serializing Java strings is more expensive than serializing other Java primitive types. Strings are
also memory intensive, they consume two bytes of memory per Character, and cannot compactly
represent binary data (integers, for example). In addition, the introduction of string-based
messages often implies an expensive parse step in the application in order to process the String
into something the application can make direct use of. Bytes, Stream, Map and even Object
messages are therefore sometimes preferable to Text and XML messages. Similarly, it is
preferable to avoid the use of strings in message properties, especially if they are large.

Server-side serialization
WebLogic JMS servers do not incur the cost of serializing non-persistent messages. Serialization
of non-persistent message types is incurred by the remote client. Persistent are serialized by the
server.

Selection
Using a selector is expensive. This consideration is important when you are deciding where in the
message to store application data that is accessed via JMS selectors.

Message Compression
Compressing large messages in a JMS application can improve performance. This reduces the
amount of time required to transfer messages across the network, reduces the amount of memory
used by the JMS server, and, if the messages are persistent, reduces the size of persistent writes.
Text and XML messages can often be compressed significantly. Of course, compression is
achieved at the expense of an increase in the CPU usage of the client.

Message Proper t i es and Message Header F ie lds

Programming WebLogic JMS 3-3

Keep in mind that the benefits of compression become questionable for "smaller" messages. If a
message is less than a few KB in size, compression can actually increase its size. The JDK
provides built-in compression libraries. For details, see the "java.util.zip" package.

For information on using JMS connection factories to specify the automatic compression of
messages that exceed a specified threshold size, see Tuning Weblogic JMS in the WebLogic
Performance and Tuning Guide.

Message Properties and Message Header Fields
Instead of user-defined message properties, consider using standard JMS message header fields
or the message body for message data. Message properties incur an extra cost in serialization, and
are more expensive to access than standard JMS message header fields.

Also, avoid embedding large amounts of data in the properties field or the header fields; only
message bodies are paged out when paging is enabled. Consequently, if user-defined message
properties are defined in an application, avoid the use of large string properties.

For more information, see “Message Header Fields” on page 2-20 and “Message Property Fields”
on page 2-25.

Message Ordering
You should use the Message Unit-of-Order feature rather than Ordered Redelivery to guarantee
ordered message processing. The advantages of Message Unit-of-Order over Ordered Redelivery
are:

Ease of configuration.

– Does not require a custom connection factory for asynchronous receivers, such as
setting MessagingMaximum to 1 when using message-driven beans (MDBs).

– Simple configuration when using distributed destinations.

Preserves message order during processing delays.

Preserves message order during transaction rollback or session recovery.

BEA recommends applications that use Ordered Redelivery upgrade to Message Unit-of-Order.
For more information, see Chapter 10, “Using Message Unit-of-Order.”

http://e-docs.bea.com/wls/docs92/perform/jmstuning.html#compressing_messages

Best P ract ices fo r App l icat i on Des ign

3-4 Programming WebLogic JMS

Topics vs. Queues
Surprisingly, when you are starting to design your application, it is not always immediately
obvious whether it would be better to use a Topic or Queue. In general, you should choose a Topic
only if one of the following conditions applies:

The same message must be replicated to multiple consumers.

A message should be dropped if there are no active consumers that would select it.

There are many subscribers, each with a unique selector.

It is interesting to note that a topic with a single durable subscriber is semantically similar to a
queue. The differences are as follows:

If you change a topic selector for a durable subscriber, all previous messages in the
subscription are deleted, while if you change a queue selector for consumer, no messages
in the queue are deleted.

A queue may have multiple consumers, and will distribute its messages in a round-robin
fashion, whereas a topic subscriber is limited to only one consumer.

For more information on configuring JMS queues and topics, see Queue and Topic Destination
Resources in Configuring and Managing WebLogic JMS.

Asynchronous vs. Synchronous Consumers
In general, asynchronous (onMessage) consumers perform and scale better than synchronous
consumers:

Asynchronous consumers create less network traffic. Messages are pushed unidirectionally,
and are pipelined to the message listener. Pipelining supports the aggregation of multiple
messages into a single network call.

Note: In WebLogic Server 9.2, your synchronous consumers can also use the same efficient
behavior as asynchronous consumers by enabling the Prefetch Mode for Synchronous
Consumers option on JMS connection factories, as described in “Using the Prefetch
Mode to Create a Synchronous Message Pipeline” on page 4-30.

Asynchronous consumers use fewer threads. An asynchronous consumer does not use a
thread while it is inactive. A synchronous consumer consumes a thread for the duration of
its receive call. As a result, a thread can remain idle for long periods, especially if the call
specifies a blocking timeout.

http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#jms_destinations_config

Pers is tent vs . Non-Pers i s tent Messages

Programming WebLogic JMS 3-5

For application code that runs on a server, it is almost always best to use asynchronous
consumers, typically via MDBs. The use of asynchronous consumers prevents the
application code from doing a blocking operation on the server. A blocking operation, in
turn, idles a server-side thread; it can even cause deadlocks. Deadlocks occur when
blocking operations consume all threads. When no threads remain to handle the operations
required to unblock the blocking operation itself, that operation never stops blocking.

For more information, see “Receiving Messages Asynchronously” on page 4-28 and “Receiving
Messages Synchronously” on page 4-29.

Persistent vs. Non-Persistent Messages
When designing an application, make sure you specify that messages will be sent in
non-persistent mode unless a persistent QOS is required. We recommend non-persistent mode
because unless synchronous writes are disabled, a persistent QOS almost certainly causes a
significant degradation in performance.

Note: Take special care to avoid persisting messages unintentionally. Occasionally an
application sends persistent messages even though the designer intended the messages to
be sent in non persistent mode.

If your messages are truly non-persistent, none should end up in a regular JMS store. To make
sure that none of your messages are unintentionally persistent, check whether the JMS store size
grows when unconsumed messages are accumulating on the JMS server. Here is how message
persistence is determined, in order of precedence:

Producer's connection's connection factory configuration:

– PERSISTENT (default)

– NON_PERSISTENT

JMS Producer API override on QueueSender and TopicPublisher:

– setDeliveryMode(DeliveryMode.PERSISTENT)

– setDeliveryMode(DeliveryMode.NON_PERSISTENT)

– setDeliveryMode(DeliveryMode.DEFAULT_DELIVERY_MODE) (default)

JMS Producer API per message override on QueueSender and TopicPublisher:

– for queues, optional deliveryMode parameter on send()

– for topics, optional deliveryMode parameter on publish()

Best P ract ices fo r App l icat i on Des ign

3-6 Programming WebLogic JMS

Override on destination configuration:

– Persistent

– Non-Persistent

– No-Delivery (default, implies no override)

Override on JMS server configuration:

– No store configured implies using the default persistent store that is available on each
targeted WebLogic Server instance

– Store configured implies no-override.

Non-durable subscribers only:

– In WebLogic releases 7.0 and higher, if there are no subscribers, or there are only
non-durable subscribers for a topic, the messages will be downgraded to non-persistent.
(Because non-durable subscribers exist only for the life of the JMS server, there is no
reason to persist the message.)

Temporary destinations:

– Because temporary destinations exist only for the lifetime of their host JMS server,
there is no reason to persist their messages. WebLogic JMS automatically forces all
messages in a temporary destination to non-persistent.

Durable subscribers require a persistent store to be configured on their JMS server, even if they
receive only non-persistent messages. A durable subscription is persisted to ensure that it
continues through a server restart, as required by the JMS specification.

Deferring Acknowledges and Commits
Because sends are generally faster than receives, consider reducing the overhead associated with
receives by deferring acknowledgment of messages until several messages have been received
and can be acknowledged collectively. If you are using transactions substitute the word "commit"
for "acknowledge."

Deferment of acknowledgements is not likely to improve performance for non-durable
subscriptions, however, because of internal optimizations already in place.

It may not be possible to implement deferred acknowledgements for asynchronous listeners. If an
asynchronous listener acknowledges only every 10 messages, but for some reason receives only
5, then the last few messages may not be acknowledged. One possible solution is to have the
asynchronous consumer post synchronous, non-blocking receives from within its onMessage()

Using AUTO_ACK fo r Non-Durab le Subscr ibe rs

Programming WebLogic JMS 3-7

callback to receive subsequent messages. Another possible solution is to have the listener start a
timer that, when triggered, sends a message to the listener's destination in order to wake it up and
complete the outstanding work that has not yet been acknowledged—provided the wake-up
message can be directed solely at the correct listener.

Using AUTO_ACK for Non-Durable Subscribers
In WebLogic Server 7.0 and higher, non-durable, non-transactional topic subscribers are
optimized to store local copies of the message on the client side, thus reducing network overhead
when acknowledgements are being issued. This optimization yields a 10-20% performance
improvement, where the improvement is more evident under higher subscriber loads.

One side effect of this optimization, particularly for high numbers of concurrent topic
subscribers, is the overhead of client-side garbage collection, which can degrade performance for
message subscriptions. To prevent such degradation, we recommended allocating a larger heap
size on the subscriber client. For example, in a test of 100 concurrent subscribers running in 10
JVMs, it was found that giving clients an initial and maximum heap size of 64MB for each JVM
was sufficient.

Alternative Qualities of Service, Multicast and
No-Acknowledge

WebLogic JMS 6.0 and above provide alternative qualities of service (QOS) extensions that can
aid performance.

Using MULTICAST_NO_ACKNOWLEDGE
Non-durable topic subscribers can subscribe to messages using MULTICAST_NO_ACKNOWLEDGE .
If a topic has such subscribers, the JMS server will broadcast messages to them using multicast
mode. Multicast improves performance considerably and provides linear scalability, as the
network only needs to handle only one message, regardless of the number of subscribers, rather
than one message per subscriber. Multicast messages may be lost if the network is congested, or
if the client falls behind in processing them. Calls to "recover()" or "acknowledge()" have no
effect on multicast messages.

Note: On the client side, each multicasting session requires a dedicated thread to retrieve
messages off the multicast socket. Therefore, you should increase the JMS client-side
thread pool size to adjust for this.

Best P ract ices fo r App l icat i on Des ign

3-8 Programming WebLogic JMS

This QOS extension has the same level of guarantee as some JMS implementations default QOS
from vendors other than BEA WebLogic Server for non-durable topic subscriptions. The JMS
1.0.2 specification specifically allows non-durable topic messages to be dropped (deleted) if the
subscriber is not ready for them. WebLogic JMS actually has a higher QOS for non-durable topic
subscriptions by default than the JMS 1.0.2 specification requires.

Using NO_ACKNOWLEDGE
A no-acknowledge delivery mode implies that the server gives messages to consumers, but does
not expect acknowledge to be called. Instead, the server pre-acknowledges the message. In this
acknowledge mode, calls to recover will not work, as the message is already acknowledged. This
mode saves the overhead of an additional network call to acknowledge, at the expense of possibly
losing a message when a server failure, a network failure, or a client failure occurs.

Note: If an asynchronous client calls close() in this scenario, all messages in the
asynchronous pipeline are lost.

Asynchronous consumers that use a NO_ACKNOWLEDGE QOS may wish to tune down their
message pipeline size in order to reduce the number of lost messages in the event of a crash.

Avoid Multi-threading
The JMS Specification states that multi-threading a session, producer, consumer, or message
method results in undefined behavior except when calling close(). For this release, if WebLogic
JMS determines that you created a multi-threaded producer, the server instance throws a
JMSException. If your application is thread limited, try increasing the number of producers and
sessions.

http://java.sun.com/products/jms/docs.html

Programming WebLogic JMS 4-1

C H A P T E R 4

Developing a Basic JMS Application

The following sections provide information on the steps required to develop a basic JMS
application:

1. “Importing Required Packages” on page 4-2

2. “Setting Up a JMS Application” on page 4-2

3. “Sending Messages” on page 4-20

4. “Receiving Messages” on page 4-27

5. “Acknowledging Received Messages” on page 4-32

6. “Releasing Object Resources” on page 4-32

In addition to the application development steps defined in the previous figure, you can also
optionally perform any of the following steps during your design development:

Manage connection and session processing

Create destinations dynamically

Create durable subscriptions

Manage message processing by setting and browsing message header and property fields,
filtering messages, and/or processing messages concurrently

Use JMS within transactions (described in “Using Transactions with WebLogic JMS” on
page 12-1)

Deve lop ing a Bas ic JMS App l icat ion

4-2 Programming WebLogic JMS

Note: For more information about the JMS classes described in this section, access the JMS
Javadoc supplied on the Sun Microsystems’ Java Website.

Importing Required Packages
The following table lists the packages that are commonly used by WebLogic JMS applications.

Setting Up a JMS Application
Before you can send and receive messages, you must set up a JMS application. The following
figure illustrates the steps required to set up a JMS application.

Table 4-1 WebLogic JMS Packages

Package Description

javax.jms Sun Microsystems’ JMS API. This package is always
used by WebLogic JMS applications.

javax.naming

weblogic.jndi

JNDI packages required for server and destination
lookups.

javax.transaction.UserTransaction JTA API required for JTA user transaction support.

weblogic.jms.extensions WebLogic-specific JMS public API that provides
additional classes and methods, as described in
“Value-Added Public JMS API Extensions” on
page 2-7.

 weblogic.jms.extensions.ServerSessionPoolFactory Deprecated in WebLogic Server 8.1.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/package-summary.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jndi/package-summary.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/docs.html

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-3

Figure 4-1 Setting Up a JMS Application

The setup steps are described in the following sections. Detailed examples of setting up a
Point-to-Point (PTP) and Publish/Subscribe (Pub/Sub) application are also provided. The
examples are excerpted from the examples.jms package provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms directory, where WL_HOME is the
top-level directory of your WebLogic Platform installation.

Deve lop ing a Bas ic JMS App l icat ion

4-4 Programming WebLogic JMS

Before proceeding, ensure that the system administrator responsible for configuring WebLogic
Server has configured the required JMS resources, including the connection factories, JMS
servers, and destinations.

For more information, see “Configure Messaging” in the Administration Console Online
Help.

For more information about the JMS classes and methods described in these sections, see
“Understanding the JMS API” on page 2-9, or the javax.jms, or the
weblogic.jms.extensions Javadoc.

For information about setting up transacted applications and JTA user transactions, see
“Using Transactions with WebLogic JMS” on page 12-1.

Step 1: Look Up a Connection Factory in JNDI
Before you can look up a connection factory, it must be defined as part of the configuration
information. WebLogic JMS provides two default connection factories that are included as part
of the configuration. They can be looked up using the JNDI names,
weblogic.jms.ConnectionFactory and weblogic.jms.XAConnectionFactory, which is
configured to enable JTA transactions. The administrator can configure new connection factories
during configuration; however, these factories must be uniquely named or the server will not
boot. For information on configuring connection factories and the defaults that are available, see
“Configure connection factories” in the Administration Console Online Help.

Once the connection factory has been defined, you can look it up by first establishing a JNDI
context (context) using the InitialContext() method. For any application other than a
servlet application, you must pass an environment used to create the initial context.

Once the context is defined, to look up a connection factory in JNDI, execute one of the following
commands, for PTP or Pub/Sub messaging, respectively:

QueueConnectionFactory queueConnectionFactory =

 (QueueConnectionFactory) context.lookup(CF_name);

TopicConnectionFactory topicConnectionFactory =

 (TopicConnectionFactory) context.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during configuration.

For more information about the ConnectionFactory class, see “ConnectionFactory” on
page 2-10 or the javax.jms.ConnectionFactory Javadoc.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/ConfigureJMSService.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionFactory.html

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-5

Step 2: Create a Connection Using the Connection Factory
You can create a connection for accessing the messaging system by using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see “Connection” on page 2-13 or the
javax.jms.Connection Javadoc.

Create a Queue Connection
The QueueConnectionFactory provides the following two methods for creating a queue
connection:

public QueueConnection createQueueConnection(

) throws JMSException

public QueueConnection createQueueConnection(

 String userName,

 String password

) throws JMSException

The first method creates a QueueConnection; the second method creates a QueueConnection
using a specified user identity. In each case, a connection is created in stopped mode and must be
started in order to accept messages, as described in “Step 7: Start the Connection” on page 4-14.

For more information about the QueueConnectionFactory class methods, see the
javax.jms.QueueConnectionFactory Javadoc. For more information about the
QueueConnection class, see the javax.jms.QueueConnection Javadoc.

Create a Topic Connection
The TopicConnectionFactory provides the following two methods for creating a topic
connection:

public TopicConnection createTopicConnection(

) throws JMSException

public TopicConnection createTopicConnection(

 String userName,

 String password

) throws JMSException

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Connection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnectionFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnection.html

Deve lop ing a Bas ic JMS App l icat ion

4-6 Programming WebLogic JMS

The first method creates a TopicConnection; the second method creates a TopicConnection
using a specified user identity. In each case, a connection is created in stopped mode and must be
started in order to accept messages, as described in “Step 7: Start the Connection” on page 4-14.

For more information about the TopicConnectionFactory class methods, see the
javax.jms.TopicConnectionFactory Javadoc. For more information about the
TopicConnection class, see the javax.jms.TopicConnection Javadoc.

Step 3: Create a Session Using the Connection
You can create one or more sessions for accessing a queue or topic using the Connection
methods described in the following sections.

Notes: A session and its message producers and consumers can only be accessed by one thread
at a time. Their behavior is undefined if multiple threads access them simultaneously.

WebLogic JMS does not support having both types of MessageConsumer
(QueueConsumer and TopicSubscriber) for a single Session. However, it does support a
single session with both a QueueSender and a TopicSubscriber (and vice-versa:
QueueConsumer and TopicPublisher), or with multiple MessageProducers of any type.

For more information about the Session class, see “Session” on page 2-14 or the
javax.jms.Session Javadoc.

Create a Queue Session
The QueueConnection class defines the following method for creating a queue session:

public QueueSession createQueueSession(

 boolean transacted,

 int acknowledgeMode

) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted (true) or
non-transacted (false), and an integer that indicates the acknowledge mode for non-transacted
sessions, as described in Table 2-7, “Acknowledge Modes Used for Non-Transacted Sessions,”
on page 2-15. The acknowledgeMode attribute is ignored for transacted sessions. In this case,
messages are acknowledged when the transaction is committed using the commit() method.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the QueueSession class,
see the javax.jms.QueueSession Javadoc.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnectionFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSession.html

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-7

Create a Topic Session
The TopicConnection class defines the following method for creating a topic session:

public TopicSession createTopicSession(

 boolean transacted,

 int acknowledgeMode

) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted (true) or
non-transacted (false), and an integer that indicates the acknowledge mode for non-transacted
sessions, as described in “Acknowledge Modes Used for Non-Transacted Sessions” on
page 2-15. The acknowledgeMode attribute is ignored for transacted sessions. In this case,
messages are acknowledged when the transaction is committed using the commit() method.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the TopicSession class,
see the javax.jms.TopicSession Javadoc.

Step 4: Look Up a Destination (Queue or Topic)
Before you can look up a destination, the destination must be configured by the WebLogic JMS
system administrator, as described in “Configure topics” and “Configure queues” in the
Administration Console Online Help. For more information about the Destination class, see
“Destination” on page 2-17 or the javax.jms.Destination Javadoc.

Once the destination has been configured, you can look up a destination using one of the
following procedures:

Using a JNDI Name
You can look up a destination by establishing a JNDI context (context), which has already been
accomplished in “Step 1: Look Up a Connection Factory in JNDI” on page 4-4, and executing
one of the following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination’s JNDI name defined during configuration.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSession.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopics.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueues.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Deve lop ing a Bas ic JMS App l icat ion

4-8 Programming WebLogic JMS

Use a Reference
If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:

Note: The createQueue() and createTopic() methods do not create destinations
dynamically; they create only references to destinations that already exist. For
information about creating destinations dynamically, see “Using JMS Module Helper to
Manage Applications” on page 6-1.

public Queue createQueue(

 String queueName

) throws JMSException

public Topic createTopic(

 String topicName

) throws JMSException

The value of queueName and/or topicName string is defined by:

The CreateDestinationIdentifier when configuring a destination, see JMS Queue:
Configuration: General and JMS Topic: Configuration: General. For more information
about these methods, see the javax.jms.QueueSession and javax.jms.TopicSession
Javadoc, respectively.

A string is defined by JMS_Server_Name/Module_Name!Destination_Name (for
example, myjmsserver/myModule-jms!mydestination). When referencing a
destination in an interop module, the string is defined by
JMS_Server_Name/interop-jms!Destination_Name (for example,
myjmsserver/interop-jms!mydestination).

Note: To reference destination in releases prior to WebLogic 9.0, use a string defined by
JMS_Server_Name!Destination_Name (for example,
myjmsserver!mydestination).

Once the destination has been defined, you can use the following Queue or Topic method to
access the queue or topic name, respectively:

public String getQueueName(

) throws JMSException

public String getTopicName(

) throws JMSException

To ensure that the queue and topic names are returned in printable format, use the toString()
method.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsdestinationsjmsqueueconfiggeneraltitle.html#advancedAttributes
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsdestinationsjmsqueueconfiggeneraltitle.html#advancedAttributes
http://e-docs.bea.com/wls/docs92//ConsoleHelp/pagehelp/JMSjmsdestinationsjmstopicconfiggeneraltitle.html#advancedAttributes
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSession.html
http://e-docs.bea.com/wls/docs92/jms_admin/overview.html#jms_interop_modules

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-9

Server Affinity When Looking Up Destinations
The createTopic() and createQueue() methods also allow a "./Destination_Name"
syntax to indicate server affinity when looking up destinations. This will locate destinations that
are locally deployed in the same JVM as the JMS connection’s connection factory host. If the
name is not on the local JVM an exception is thrown, even though the same name might be
deployed on a different JVM.

An application might use this convention to avoid hard-coding the server name when using the
createTopic() and createQueue() methods so that the code can be reused on different JMS
servers without requiring any changes.

Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations
You can create message producers and message consumers by passing the destination reference
to the Session methods described in the following sections.

Note: Each consumer receives its own local copy of a message. Once received, you can modify
the header field values; however, the message properties and message body are read only.
(Attempting to modify the message properties or body at this point will generate a
MessageNotWriteableException.) You can modify the message body by executing
the corresponding message type’s clearbody() method to clear the existing contents
and enable write permission.

For more information about the MessageProducer and MessageConsumer classes, see
“MessageProducer and MessageConsumer” on page 2-19, or the
javax.jms.MessageProducer and javax.jms.MessageConsumer Javadocs, respectively.

Create QueueSenders and QueueReceivers
The QueueSession object defines the following methods for creating queue senders and
receivers:

public QueueSender createSender(

 Queue queue

) throws JMSException

public QueueReceiver createReceiver(

 Queue queue

) throws JMSException

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html

Deve lop ing a Bas ic JMS App l icat ion

4-10 Programming WebLogic JMS

public QueueReceiver createReceiver(

 Queue queue,

 String messageSelector

) throws JMSException

You must specify the queue object for the queue sender or receiver being created. You may also
specify a message selector for filtering messages. Message selectors are described in more detail
in “Filtering Messages” on page 5-34.

If you pass a value of null to the createSender() method, you create an anonymous producer.
In this case, you must specify the queue name when sending messages, as described in “Sending
Messages” on page 4-20.

Once the queue sender or receiver has been created, you can access the queue name associated
with the queue sender or receiver using the following QueueSender or QueueReceiver method:

public Queue getQueue(

) throws JMSException

For more information about the QueueSession class methods, see the
javax.jms.QueueSession Javadoc. For more information about the QueueSender and
QueueReceiver classes, see the javax.jms.QueueSender and javax.jms.QueueReceiver
Javadocs, respectively.

Create TopicPublishers and TopicSubscribers
The TopicSession object defines the following methods for creating topic publishers and topic
subscribers:

public TopicPublisher createPublisher(

 Topic topic

) throws JMSException

public TopicSubscriber createSubscriber(

 Topic topic

) throws JMSException

public TopicSubscriber createSubscriber(

 Topic topic,

 String messageSelector,

 boolean noLocal

) throws JMSException

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSender.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueReceiver.html

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-11

Note: The methods described in this section create non-durable subscribers. Non-durable topic
subscribers only receive messages sent while they are active. For information about the
methods used to create durable subscriptions enabling messages to be retained until all
messages are delivered to a durable subscriber, see “Creating Subscribers for a Durable
Subscription” on page 5-23. In this case, durable subscribers only receive messages that
are published after the subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You may also
specify a message selector for filtering messages and a noLocal flag (described later in this
section). Message selectors are described in more detail in “Filtering Messages” on page 5-34.

If you pass a value of null to the createPublisher() method, you create an anonymous
producer. In this case, you must specify the topic name when sending messages, as described in
“Sending Messages” on page 4-20.

An application can have a JMS connection that it uses to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, the application can receive
messages it has published itself. To prevent this behavior, a JMS application can set a noLocal
flag to true.

Once the topic publisher or subscriber has been created, you can access the topic name associated
with the topic publisher or subscriber using the following TopicPublisher or
TopicSubscriber method:

Topic getTopic(

) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic subscriber
using the following TopicSubscriber method:

boolean getNoLocal(

) throws JMSException

For more information about the TopicSession class methods, see the
javax.jms.TopicSession Javadoc. For more information about the TopicPublisher and
TopicSubscriber classes, see the javax.jms.TopicPublisher and
javax.jms.TopicSubscriber Javadocs, respectively.

Step 6a: Create the Message Object (Message Producers)
Note: This step applies to message producers only.

To create the message object, use one of the following Session or WLSession class methods:

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicPublisher.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSubscriber.html

Deve lop ing a Bas ic JMS App l icat ion

4-12 Programming WebLogic JMS

Session Methods

Note: These methods are inherited by both the QueueSession and TopicSession
subclasses.

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage createMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
 Serializable object
) throws JMSException

public StreamMessage createStreamMessage(
) throws JMSException

public TextMessage createTextMessage(
) throws JMSException

public TextMessage createTextMessage(
 String text
) throws JMSException

WLSession Method

public XMLMessage createXMLMessage(
 String text
) throws JMSException

For more information about the Session and WLSession class methods, see the
javax.jms.Session and weblogic.jms.extensions.WLSession Javadocs, respectively.
For more information about the Message class and its methods, see “Message” on page 2-20, or
the javax.jms.Message Javadoc.

Step 6b: Optionally Register an Asynchronous Message
Listener (Message Consumers)
Note: This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message listener by
performing the following steps:

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-13

1. Implement the javax.jms.MessageListener interface, which includes an onMessage()
method.

Note: For an example of the onMessage() method interface, see “Example: Setting Up a
PTP Application” on page 4-14.

If you wish to issue the close() method within an onMessage() method call, the
system administrator must select the Allow Close In OnMessage option when
configuring the connection factory. For more information on configuring connection
factory options, see Configuring JMS Resources in Configuring and Managing
WebLogic JMS.

2. Set the message listener using the following MessageConsumer method, passing the listener
information as an argument:

public void setMessageListener(
 MessageListener listener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as described
in “Defining a Connection Exception Listener” on page 5-12.

You can unset a message listener by calling the MessageListener() method with a value of
null.

Once a message listener has been defined, you can access it by calling the following
MessageConsumer method:

public MessageListener getMessageListener(

) throws JMSException

Note: WebLogic JMS guarantees that multiple onMessage() calls for the same session will not
be executed simultaneously.

If a message consumer is closed by an administrator or as the result of a server failure, a
ConsumerClosedException is delivered to the session exception listener, if one has been
defined. In this way, a new message consumer can be created, if necessary. For information about
defining a session exception listener, see “Defining a Connection Exception Listener” on
page 5-12.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see “MessageProducer and MessageConsumer” on page 2-19 or the
javax.jms.MessageConsumer Javadoc.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#jms_connection_factories_config
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html

Deve lop ing a Bas ic JMS App l icat ion

4-14 Programming WebLogic JMS

Step 7: Start the Connection
You start the connection using the Connection class start() method.

For additional information about starting, stopping, and closing a connection, see “Starting,
Stopping, and Closing a Connection” on page 5-13 or the javax.jms.Connection Javadoc.

Example: Setting Up a PTP Application
The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The init() method
shows how to set up and start a QueueSession for a JMS application. The following shows the
init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and queue
static variables.

public final static String JNDI_FACTORY=

"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=

"weblogic.examples.jms.QueueConnectionFactory";

public final static String

 QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory qconFactory;

private QueueConnection qcon;

private QueueSession qsession;

private QueueSender qsender;

private Queue queue;

private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);

.

.

.

private static InitialContext getInitialContext(

 String url

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Connection.html

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-15

) throws NamingException

{

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);

 env.put(Context.PROVIDER_URL, url);

 return new InitialContext(env);

}

Note: When setting up the JNDI initial context for an EJB or servlet, use the following method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object is the JNDI
initial context passed in by the main() method.

public void init(

 Context ctx,

 String queueName

) throws NamingException, JMSException

{

Step 1
Look up a connection factory in JNDI.

 qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2
Create a connection using the connection factory.

 qcon = qconFactory.createQueueConnection();

Step 3
Create a session using the connection. The following code defines the session as non-transacted
and specifies that messages will be acknowledged automatically. For more information about
transacted sessions and acknowledge modes, see “Session” on page 2-14.

 qsession = qcon.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

Step 4
Look up a destination (queue) in JNDI.

 queue = (Queue) ctx.lookup(queueName);

Deve lop ing a Bas ic JMS App l icat ion

4-16 Programming WebLogic JMS

Step 5
Create a reference to a message producer (queue sender) using the session and destination
(queue).

 qsender = qsession.createSender(queue);

Step 6
Create the message object.

 msg = qsession.createTextMessage();

Step 7
Start the connection.

 qcon.start();

}

The init() method for the examples.jms.queue.QueueReceive example is similar to the
QueueSend init() method shown previously, with the one exception. Steps 5 and 6 would be
replaced by the following code, respectively:

qreceiver = qsession.createReceiver(queue);

qreceiver.setMessageListener(this);

In the first line, instead of calling the createSender() method to create a reference to the queue
sender, the application calls the createReceiver() method to create the queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage() method. The following code excerpt shows the
onMessage() interface from the QueueReceive example:

public void onMessage(Message msg)

{

 try {

String msgText;

if (msg instanceof TextMessage) {

 msgText = ((TextMessage)msg).getText();

} else { // If it is not a TextMessage...

 msgText = msg.toString();

}

System.out.println("Message Received: "+ msgText);

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-17

if (msgText.equalsIgnoreCase("quit")) {

 synchronized(this) {

 quit = true;

this.notifyAll(); // Notify main thread to quit

 }

}

 } catch (JMSException jmse) {

 jmse.printStackTrace();

 }

}

The onMessage() method processes messages received through the queue receiver. The method
verifies that the message is a TextMessage and, if it is, prints the text of the message. If
onMessage() receives a different message type, it uses the message's toString() method to
display the message contents.

Note: It is good practice to verify that the received message is the type expected by the handler
method.

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-9 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Application
The following example is excerpted from the examples.jms.topic.TopicSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\topic directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The init() method
shows how to set up and start a topic session for a JMS application. The following shows the
init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and topic
static variables.

public final static String JNDI_FACTORY=

"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=

"weblogic.examples.jms.TopicConnectionFactory";

public final static String

TOPIC="weblogic.examples.jms.exampleTopic";

http://www.java.sun.com/products/jms/docs.html

Deve lop ing a Bas ic JMS App l icat ion

4-18 Programming WebLogic JMS

protected TopicConnectionFactory tconFactory;

protected TopicConnection tcon;

protected TopicSession tsession;

protected TopicPublisher tpublisher;

protected Topic topic;

protected TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);

.

.

.

private static InitialContext getInitialContext(

 String url

) throws NamingException

{

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);

 env.put(Context.PROVIDER_URL, url);

 return new InitialContext(env);

}

Note: When setting up the JNDI initial context for a servlet, use the following method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object is the JNDI
initial context passed in by the main() method.

public void init(

 Context ctx,

 String topicName

) throws NamingException, JMSException

{

Step 1
Look up a connection factory using JNDI.

 tconFactory =

 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);

Set t ing Up a JMS Appl i cat ion

Programming WebLogic JMS 4-19

Step 2
Create a connection using the connection factory.

 tcon = tconFactory.createTopicConnection();

Step 3
Create a session using the connection. The following defines the session as non-transacted and
specifies that messages will be acknowledged automatically. For more information about setting
session transaction and acknowledge modes, see “Session” on page 2-14.

 tsession = tcon.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

Step 4
Look up the destination (topic) using JNDI.

 topic = (Topic) ctx.lookup(topicName);

Step 5
Create a reference to a message producer (topic publisher) using the session and destination
(topic).

 tpublisher = tsession.createPublisher(topic);

Step 6
Create the message object.

 msg = tsession.createTextMessage();

Step 7
Start the connection.

 tcon.start();

 }

The init() method for the examples.jms.topic.TopicReceive example is similar to the
TopicSend init() method shown previously with on exception. Steps 5 and 6 would be
replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);

tsubscriber.setMessageListener(this);

Deve lop ing a Bas ic JMS App l icat ion

4-20 Programming WebLogic JMS

In the first line, instead of calling the createPublisher() method to create a reference to the
topic publisher, the application calls the createSubscriber() method to create the topic
subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage() method. The onMessage() interface for the
TopicReceive example is the same as the QueueReceive onMessage() interface, as described
in “Example: Setting Up a PTP Application” on page 4-14.

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-9 or the javax.jms Javadoc.

Sending Messages
Once you have set up the JMS application as described in “Setting Up a JMS Application” on
page 4-2, you can send messages. To send a message, you must perform the following steps:

1. “Create a Message Object” on page 4-20.

2. “Define a Message” on page 4-20

3. “Send the Message to a Destination” on page 4-21

For more information about the JMS classes for sending messages and the message types, see the
javax.jms.Message Javadoc. For information about receiving messages, see “Receiving
Messages” on page 4-27.

Create a Message Object
This step has already been accomplished as part of the client setup procedure, as described in
“Step 6a: Create the Message Object (Message Producers)” on page 4-11.

Define a Message
This step may have been accomplished when setting up an application, as described in “Step 6a:
Create the Message Object (Message Producers)” on page 4-11. Whether or not this step has
already been accomplished depends on the method that was called to create the message object.
For example, for TextMessage and ObjectMessage types, when you create a message object, you
have the option of defining the message when you create the message object.

If a value has been specified and you do not wish to change it, you can proceed to step 3.

http://www.java.sun.com/products/jms/docs.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Send ing Messages

Programming WebLogic JMS 4-21

If a value has not been specified or if you wish to change an existing value, you can define a value
using the appropriate set method. For example, the method for defining the text of a
TextMessage is as follows:

public void setText(

 String string

) throws JMSException

Note: Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody(

) throws JMSException

For more information about the methods used to define messages, see the javax.jms.Session
Javadoc.

Send the Message to a Destination
You can send a message to a destination using a message producer—queue sender (PTP) or topic
publisher (Pub/Sub)—and the methods described in the following sections. The Destination
and MessageProducer objects were created when you set up the application, as described in
“Setting Up a JMS Application” on page 4-2.

Note: If multiple topic subscribers are defined for the same topic, each subscriber will receive
its own local copy of a message. Once received, you can modify the header field values;
however, the message properties and message body are read only. You can modify the
message body by executing the corresponding message type’s clearbody() method to
clear the existing contents and enable write permission.

For more information about the MessageProducer class, see “MessageProducer and
MessageConsumer” on page 2-19 or the javax.jms.MessageProducer Javadoc.

Send a Message Using Queue Sender
You can send messages using the following QueueSender methods:

public void send(

 Message message

) throws JMSException

public void send(

 Message message,

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html

Deve lop ing a Bas ic JMS App l icat ion

4-22 Programming WebLogic JMS

 int deliveryMode,

 int priority,

 long timeToLive

) throws JMSException

public void send(

 Queue queue,

 Message message

) throws JMSException

public void send(

 Queue queue,

 Message message,

 int deliveryMode,

 int priority,

 long timeToLive

) throws JMSException

You must specify a message. You may also specify the queue name (for anonymous message
producers), delivery mode (DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT), priority (0-9), and time-to-live (in milliseconds). If not
specified, the delivery mode, priority, and time-to-live attributes are set to one of the following:

Connection factory or destination override configuration attributes defined for the
producer, as described “Configure default delivery parameters” in the Administration
Console Online Help.

Values specified using the message producer’s set methods, as described in “Setting
Message Producer Attributes” on page 4-25.

Notes: WebLogic JMS also provides the following proprietary attributes, as described in
“Setting Message Producer Attributes” on page 4-25:

TimeToDeliver (that is, birth time), which represents the delay before a sent
message is made visible on its target destination.

RedeliveryLimit, which determines the number of times a message is
redelivered after a recover or rollback.

SendTimeout, which is the maximum time the producer will wait for space when
sending a message.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureDefaultDeliveryParams.html

Send ing Messages

Programming WebLogic JMS 4-23

If you define the delivery mode as PERSISTENT, you should configure a backing store for the
destination, as described in “Configure persistent stores” in the Administration Console Online
Help.

Note: If no backing store is configured, then the delivery mode is changed to NON_PERSISTENT
and messages are not written to the persistent store.

If the queue sender is an anonymous producer (that is, if when the queue was created, the name
was set to null), then you must specify the queue name (using one of the last two methods) to
indicate where to deliver messages. For more information about defining anonymous producers,
see “Create QueueSenders and QueueReceivers” on page 4-9.

For example, the following code sends a persistent message with a priority of 4 and a time-to-live
of one hour:

QueueSender.send(message, DeliveryMode.PERSISTENT, 4, 3600000);

For additional information about the QueueSender class methods, see the
javax.jms.QueueSender Javadoc.

Send a Message Using TopicPublisher
You can send messages using the following TopicPublisher methods:

public void publish(

 Message message

) throws JMSException

public void publish(

 Message message,

 int deliveryMode,

 int priority,

 long timeToLive

) throws JMSException

public void publish(

 Topic topic,

 Message message

) throws JMSException

public void publish(

 Topic topic,

 Message message,

 int deliveryMode,

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/stores/ConfigureStores.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSender.html

Deve lop ing a Bas ic JMS App l icat ion

4-24 Programming WebLogic JMS

 int priority,

 long timeToLive

) throws JMSException

You must provide a message. You may also specify the topic name, delivery mode
(DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT), priority (0-9), and
time-to-live (in milliseconds). If not specified, the delivery mode, priority, and time-to-live
attributes are set to one of the following:

Connection factory or destination override configuration attributes defined for the
producer, as described “Configure default delivery parameters” in the Administration
Console Online Help.

Values specified using the message producer’s set methods, as described in “Setting
Message Producer Attributes” on page 4-25.

Notes: WebLogic JMS also provides the following proprietary attributes, as described in
“Setting Message Producer Attributes” on page 4-25:

TimeToDeliver (that is, birth time), which represents the delay before a sent
message is made visible on its target destination.

RedeliveryLimit, which determines the number of times a message is
redelivered after a recover or rollback.

SendTimeout, which is the maximum time the producer will wait for space when
sending a message.

If you define the delivery mode as PERSISTENT, you should configure a backing store, as
described in “Configure persistent stores” in the Administration Console Online Help.

Note: If no backing store is configured, then the delivery mode is changed to NON_PERSISTENT
and no messages are stored.

If the topic publisher is an anonymous producer (that is, if when the topic was created, the name
was set to null), then you must specify the topic name (using either of the last two methods) to
indicate where to deliver messages. For more information about defining anonymous producers,
see “Create TopicPublishers and TopicSubscribers” on page 4-10.

For example, the following code sends a persistent message with a priority of 4 and a time-to-live
of one hour:

TopicPublisher.publish(message, DeliveryMode.PERSISTENT,

 4,3600000);

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureDefaultDeliveryParams.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/stores/ConfigureStores.html

Send ing Messages

Programming WebLogic JMS 4-25

For more information about the TopicPublisher class methods, see the
javax.jms.TopicPublisher Javadoc.

Setting Message Producer Attributes
As described in the previous section, when sending a message, you can optionally specify the
delivery mode, priority, and time-to-live values. If not specified, these attributes are set to the
connection factory configuration attributes, as described in “Configure connection factories” in
the Administration Console Online Help.

Alternatively, you can set the delivery mode, priority, time-to-deliver, time-to-live, and
redelivery delay (timeout), and redelivery limit values dynamically using the message producer’s
set methods. The following table lists the message producer set and get methods for each
dynamically configurable attribute.

Note: The delivery mode, priority, time-to-live, time-to-deliver, redelivery delay (timeout), and
redelivery limit attribute settings can be overridden by the destination using the Delivery
Mode Override, Priority Override, Time To Live Override, Time To Deliver Override,
Redelivery Delay Override, and Redelivery Limit configuration attributes, as described in
“Configure message delivery overrides: Queues” and “Configure message delivery
overrides: Topics”in the Administration Console Online Help.

Table 4-2 Message Producer Set and Get Methods

Attribute Set Method Get Method

Delivery Mode public void setDeliveryMode(
 int deliveryMode
) throws JMSException

public int getDeliveryMode(
) throws JMSException

Priority public void setPriority(
 int defaultPriority
) throws JMSException

public int getPriority(
) throws JMSException

Time-To-Live public void setTimeToLive(
 long timeToLive
) throws JMSException

public long getTimeToLive(
) throws JMSException

Time-To-Deliver public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException

public long getTimeToDeliver(
) throws JMSException

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueOverrides.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicOverrides.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicOverrides.html

Deve lop ing a Bas ic JMS App l icat ion

4-26 Programming WebLogic JMS

Note: JMS defines optional MessageProducer methods for disabling the message ID and
timestamp information. However, these methods are ignored by WebLogic JMS.

For more information about the MessageProducer class methods, see Sun’s
javax.jms.MessageProducer Javadoc or the
weblogic.jms.extensions.WLMessageProducer Javadoc.

Example: Sending Messages Within a PTP Application
The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The example shows
the code required to create a TextMessage, set the text of the message, and send the message to
a queue.

msg = qsession.createTextMessage();

.

.

.

public void send(

 String message

) throws JMSException

{

 msg.setText(message);

 qsender.send(msg);

}

Redelivery Limit public void setRedeliveryLimit(
 int redeliveryLimit
) throws JMSException

public int getredeliveryLimit(
) throws JMSException

Send Timeout public void setsendTimeout(
long sendTimeout
) throws JMSException

public long getsendTimeout(
) throws JMSException

Table 4-2 Message Producer Set and Get Methods (Continued)

Attribute Set Method Get Method

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html

Rece iv ing Messages

Programming WebLogic JMS 4-27

For more information about the QueueSender class and methods, see the
javax.jms.QueueSender Javadoc.

Example: Sending Messages Within a Pub/Sub Application
The following example is excerpted from the examples.jms.topic.TopicSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\topic directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. It shows the code
required to create a TextMessage, set the text of the message, and send the message to a topic.

msg = tsession.createTextMessage();

.

.

.

public void send(

 String message

) throws JMSException

{

 msg.setText(message);

 tpublisher.publish(msg);

}

For more information about the TopicPublisher class and methods, see the
javax.jms.TopicPublisher Javadoc.

Receiving Messages
Once you have set up the JMS application as described in “Setting Up a JMS Application” on
page 4-2, you can receive messages.

To receive a message, you must create the receiver object and specify whether you want to
receive messages asynchronously or synchronously, as described in the following sections.

The order in which messages are received can be controlled by the following:

Message delivery attributes (delivery mode and sorting criteria) defined during
configuration or as part of the send() method, as described in “Sending Messages” on
page 4-20.

Destination sort order set using destination keys, as described in “Configure destination
keys” in the Administration Console Online Help.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSender.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html

Deve lop ing a Bas ic JMS App l icat ion

4-28 Programming WebLogic JMS

Once received, you can modify the header field values; however, the message properties and
message body are read-only. You can modify the message body by executing the corresponding
message type’s clearbody() method to clear the existing contents and enable write permission.

For more information about the JMS classes for receiving messages and the message types, see
the javax.jms.Message Javadoc. For information about sending messages, see “Sending
Messages” on page 4-20.

Receiving Messages Asynchronously
This procedure is described within the context of setting up the application. For more
information, see “Step 6b: Optionally Register an Asynchronous Message Listener (Message
Consumers)” on page 4-12.

Note: You can control the maximum number of messages that may exist for an asynchronous
consumer and that have not yet been passed to the message listener by setting the
Messages Maximum attribute when configuring the connection factory.

Asynchronous Message Pipeline
If messages are produced faster than asynchronous message listeners (consumers) can consume
them, a JMS server will push multiple unconsumed messages in a batch to another session with
available asynchronous message listeners. These in-flight messages are sometimes referred to as
the message pipeline, or in some JMS vendors as the message backlog. The pipeline or backlog
size is the number of messages that have accumulated on an asynchronous consumer, but which
have not been passed to a message listener.

Configuring a Message Pipeline
You can control a client’s maximum pipeline size by configuring the Messages Maximum per
Session attribute on the client’s connection factory, which is defined as the “maximum number
of messages that can exist for an asynchronous consumer and that have not yet been passed to the
message listener”. The default setting is 10. For more information on configuring a JMS
connection factory, see “Configure connection factories” in the Administration Console Online
Help.

Behavior of Pipelined Messages
Once a message pipeline is configured, it will exhibit the following behavior:

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Rece iv ing Messages

Programming WebLogic JMS 4-29

Statistics — JMS monitoring statistics reports backlogged messages in a message pipeline
as pending (for queues and durable subscribers) until they are either committed or
acknowledged.

Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will increase
client memory usage, as the pending pipelined messages accumulate on the client JVM
before the asynchronous consumer’s listener is called.

Sorting — Messages in an asynchronous consumer’s pipeline are not sorted according to
the consumer destination’s configured sort order; instead, they remain in the order in which
they are pushed from the JMS server. For example, if a destination is configured to sort by
priority, high priority messages will not jump ahead of low priority messages that have
already been pushed into an asynchronous consumer’s pipeline.

Notes: The Messages Maximum per Session pipeline size setting on the connection factory is
not related to the Messages Maximum quota settings on JMS servers and destinations.

Pipelined messages are sometimes aggregated into a single message on the network
transport. If the messages are sufficiently large, the aggregate size of the data written may
exceed the maximum value for the transport, which may cause undesirable behavior. For
example, the t3 protocol sets a default maximum message size of 10,000,000 bytes, and
is configurable on the server with the MaxT3MessageSize attribute. This means that if
ten 2 megabyte messages are pipelined, the t3 limit may be exceeded.

Receiving Messages Synchronously
To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(

) throws JMSException

public Message receive(

 long timeout

) throws JMSException

public Message receiveNoWait(

) throws JMSException

In each case, the application receives the next message produced. If you call the receive()
method with no arguments, the call blocks indefinitely until a message is produced or the
application is closed. Alternatively, you can pass a timeout value to specify how long to wait for
a message. If you call the receive() method with a value of 0, the call blocks indefinitely. The

Deve lop ing a Bas ic JMS App l icat ion

4-30 Programming WebLogic JMS

receiveNoWait() method receives the next message if one is available, or returns null; in this
case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see the javax.jms.MessageConsumer Javadoc.

Using the Prefetch Mode to Create a Synchronous Message Pipeline
In releases prior to WebLogic Server 9.1, synchronous consumers required making a two-way
network calls for each message, which was an inefficient model because the synchronous
consumer could not retrieve multiple messages, and could also increase network traffic resources,
since synchronous consumers would continually poll the server for available messages. In
WebLogic 9.1 or later, your synchronous consumers can also use the same efficient behavior as
asynchronous consumers by enabling the Prefetch Mode for Synchronous Consumers option on
JMS connection factories, either using the Administration Console or the
JMSClientParamsBean MBean.

Similar to the asynchronous message pipeline, when the Prefetch Mode is enabled on a JMS
client’s connection factory, the connection factory’s targeted JMS servers will proactively push
batches of unconsumed messages to synchronous message consumers, using the connection
factory’s Messages Maximum per Session parameter to define the maximum number of
messages per batch. This may improve performance because messages are ready and waiting for
synchronous consumers when the consumers are ready to process more messages, and it may also
reduce network traffic by reducing synchronous calls from consumers that must otherwise
continually poll for messages.

Synchronous message prefetching does not support user (XA) transactions for synchronous
message receives or multiple synchronous consumers per session (regardless of queue or topic).
In most such cases, WebLogic JMS will silently and safely ignore the Prefetch Mode for
Synchronous Consumer flag; however, otherwise WebLogic will fail the application’s
synchronous receive calls.

For more information on the behavior of pipelined messages, see “Asynchronous Message
Pipeline” on page 4-28. For more information on configuring a JMS connection factory, see
“Configure connection factories” in the Administration Console Online Help.

Example: Receiving Messages Synchronously Within a PTP Application
The following example is excerpted from the examples.jms.queue.QueueReceive example,
provided with WebLogic Server in the

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Rece iv ing Messages

Programming WebLogic JMS 4-31

WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. Rather than set a
message listener, you would call qreceiver.receive() for each message. For example:

qreceiver = qsession.createReceiver(queue);

qreceiver.receive();

The first line creates the queue receiver on the queue. The second line executes a receive()
method. The receive() method blocks and waits for a message.

Example: Receiving Messages Synchronously Within a Pub/Sub Application
The following example is excerpted from the examples.jms.topic.TopicReceive example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\topic directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. Rather than set a
message listener, you would call tsubscriber.receive() for each message.

For example:

tsubscriber = tsession.createSubscriber(topic);

Message msg = tsubscriber.receive();

msg.acknowledge();

The first line creates the topic subscriber on the topic. The second line executes a receive()
method. The receive() method blocks and waits for a message.

Recovering Received Messages
Note: This section applies only to non-transacted sessions for which the acknowledge mode is

set to CLIENT_ACKNOWLEDGE, as described in Table 2-7, “Acknowledge Modes Used for
Non-Transacted Sessions,” on page 2-15. Synchronously received
AUTO_ACKNOWLEDGE messages may not be recovered; they have already been
acknowledged.

An application can request that JMS redeliver messages (unacknowledge them) using the
following method:

public void recover(

) throws JMSException

The recover() method performs the following steps:

Stops message delivery for the session

Deve lop ing a Bas ic JMS App l icat ion

4-32 Programming WebLogic JMS

Tags all messages that have not been acknowledged (but may have been delivered) as
redelivered

Resumes sending messages starting from the first unacknowledged message for that
session

Note: Messages in queues are not necessarily redelivered in the same order that they were
originally delivered, nor to the same queue consumers. For information to guarantee the
correct ordering of redelivered messages, see “Ordered Redelivery of Messages” on
page 5-4.

Acknowledging Received Messages
Note: This section applies only to non-transacted sessions for which the acknowledge mode is

set to CLIENT_ACKNOWLEDGE, as described in Table 2-7, “Acknowledge Modes Used for
Non-Transacted Sessions,” on page 2-15.

To acknowledge a received message, use the following Message method:

public void acknowledge(

) throws JMSException

The acknowledge() method depends on how the connection factory’s Acknowledge Policy
attribute is configured, as follows:

The default policy of “All” specifies that calling acknowledge on a message acknowledges
all unacknowledged messages received on the session.

The “Previous” policy specifies that calling acknowledge on a message acknowledges only
unacknowledged messages up to, and including, the given message. Messages that are not
acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the acknowledge
mode is set to CLIENT_ACKNOWLEDGE. Otherwise, the method is ignored.

Releasing Object Resources
When you have finished using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of a JMS application, you should
explicitly close them to release the resources.

Enter the close() method to close JMS objects, as follows:

Releas ing Ob jec t Resources

Programming WebLogic JMS 4-33

public void close(

) throws JMSException

When closing an object:

The call blocks until the method call completes or until any outstanding asynchronous
receiver onMessage() calls complete.

All associated sub-objects are also closed. For example, when closing a session, all
associated message producers and consumers are also closed. When closing a connection,
all associated sessions are also closed.

For more information about the impact of the close() method for each object, see the
appropriate javax.jms Javadoc. In addition, for more information about the connection or
Session close() method, see “Starting, Stopping, and Closing a Connection” on page 5-13 or
“Closing a Session” on page 5-16, respectively.

The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. This example shows
the code required to close the message consumer, session, and connection objects.

public void close(

) throws JMSException

{

 qreceiver.close();

 qsession.close();

 qcon.close();

}

In the QueueSend example, the close() method is called at the end of main() to close objects
and free resources.

http://www.java.sun.com/products/jms/docs.html

Deve lop ing a Bas ic JMS App l icat ion

4-34 Programming WebLogic JMS

Programming WebLogic JMS 5-1

C H A P T E R 5

Managing Your Applications

The following sections describe how to programatically manage your JMS applications using
value-added WebLogic JMS features:

“Managing Rolled Back, Recovered, Redelivered, or Expired Messages” on page 5-1

“Setting Message Delivery Times” on page 5-6

“Managing Connections” on page 5-11

“Managing Sessions” on page 5-15

“Managing Destinations” on page 5-16

“Using Temporary Destinations” on page 5-20

“Setting Up Durable Subscriptions” on page 5-21

“Setting and Browsing Message Header and Property Fields” on page 5-26

“Filtering Messages” on page 5-34

“Sending XML Messages” on page 5-39

Managing Rolled Back, Recovered, Redelivered, or
Expired Messages

The following sections describe how to manage rolled back or recovered messages:

Managing Your App l ica t ions

5-2 Programming WebLogic JMS

“Setting a Redelivery Delay for Messages” on page 5-2

“Setting a Redelivery Limit for Messages” on page 5-3

“Ordered Redelivery of Messages” on page 5-4

“Handling Expired Messages” on page 5-6

Setting a Redelivery Delay for Messages
You can delay the redelivery of messages when a temporary, external condition prevents an
application from properly handling a message. This allows an application to temporarily inhibit
the receipt of “poison” messages that it cannot currently handle. When a message is rolled back
or recovered, the redelivery delay is the amount of time a message is put aside before an attempt
is made to redeliver the message.

If JMS immediately redelivers the message, the error condition may not be resolved and the
application may still not be able to handle the message. However, if an application is configured
for a redelivery delay, then when it rolls back or recovers a message, the message is set aside until
the redelivery delay has passed, at which point the messages are made available for redelivery.

All messages consumed and subsequently rolled back or recovered by a session receive the
redelivery delay for that session at the time of rollback or recovery. Messages consumed by
multiple sessions as part of a single user transaction will receive different redelivery delays as a
function of the session that consumed the individual messages. Messages that are left
unacknowledged or uncommitted by a client, either intentionally or as a result of a failure, are not
assigned a redelivery delay.

Setting a Redelivery Delay
A session inherits the redelivery delay from its connection factory when the session is created.
The RedeliveryDelay attribute of a connection factory is configured using the Administration
Console.

For more information, see “Configure connection factories” in the Administration Console
Online Help.

The application that creates the session can then override the connection factory setting using
WebLogic-specific extensions to the javax.jms.Session interface. The session attribute is
dynamic and can be changed at any time. Changing the session redelivery delay affects all
messages consumed and rolled back (or recovered) by that session after the change except when
the message is in a session using non-durable topics.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Managing Ro l l ed Back , Recovered , Rede l i ve red , o r Exp i red Messages

Programming WebLogic JMS 5-3

Note: When a session is using non-durable topics, the setRedeliveryDelay method does not
apply. This may result in unexpected behavior if you are using a non-durable topic
consumer to drive a workflow.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
javax.jms.Session interface. To define a redelivery delay for a session, use the following
methods:

public void setRedeliveryDelay(

 long redeliveryDelay

) throws JMSException;

public long getRedeliveryDelay(

) throws JMSException;

For more information on the WLSession class, refer to the
weblogic.jms.extensions.WLSession Javadoc.

Overriding the Redelivery Delay on a Destination
Regardless of what redelivery delay is set on the session, the destination where a message is being
rolled back or recovered can override the setting. The redelivery delay override applied to the
redelivery of a message is the one in effect at the time a message is rolled back or recovered.

The RedeliveryDelayOverride attribute of a destination is configured using the
Administration Console. For more information, see:

“Configure message delivery failure options: Queues” in the Administration Console
Online Help

“Configure message delivery failure options: Topics” in the Administration Console Online
Help

Setting a Redelivery Limit for Messages
You can specify a limit on the number of times that WebLogic JMS will attempt to redeliver a
message to an application. Once WebLogic JMS fails to redeliver a message to a destination for
a specific number of times, the message can be redirected to an error destination that is associated
to the message destination. If the redelivery limit is configured, but no error destination is
configured, then persistent or non-persistent messages are simply deleted when they reach their
redelivery limit.

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html

Managing Your App l ica t ions

5-4 Programming WebLogic JMS

Alternatively, you can set the redelivery limit value dynamically using the message producer’s
set method, as described in “Setting Message Producer Attributes” on page 4-25.

Configuring a Message Redelivery Limit On a Destination
When a destination’s attempts to redeliver a message to a consumer reaches a specified redelivery
limit, then the destination deems the message undeliverable. The RedeliveryLimit attribute is
set on a destination and is configurable using the Administration Console. This setting overrides
the redelivery limit set on the message producer. For more information, see:

“Configure message delivery failure options: Queues” in the Administration Console
Online Help.

“Configure message delivery failure options: Topics” in the Administration Console Online
Help.

Configuring an Error Destination for Undelivered Messages
If an error destination is configured on the JMS server for undelivered messages, then when a
message has been deemed undeliverable, the message will be redirected to a specified error
destination. The error destination can be either a queue or a topic, and it must be configured on
the same JMS server as the destination for which it is defined. If no error destination is
configured, then undeliverable messages are simply deleted.

The ErrorDestination attribute is configured for standalone destinations and uniform
distributed destination using the Administration Console. For more information, see:

“Configure message delivery failure options: Queues” in the Administration Console
Online Help.

“Configure message delivery failure options: Topics” in the Administration Console Online
Help.

“Uniform distributed topics - configure delivery failure parameters” in the Administration
Console Online Help.

“Uniform distributed topics - configure delivery failure parameters” in the Administration
Console Online Help.

Ordered Redelivery of Messages
Note: BEA recommends that applications that use Ordered Redelivery upgrade to Message

Unit-of-Order. See “Using Message Unit-of-Order” on page 10-1.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureUDQDeliveryFailure.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureUDTDeliveryFailure.html

Managing Ro l l ed Back , Recovered , Rede l i ve red , o r Exp i red Messages

Programming WebLogic JMS 5-5

As per the JMS Specification, all messages initially delivered to a consumer from a given
producer are guaranteed to arrive at the consumer in the order in which they were produced.
WebLogic JMS goes above and beyond this requirement by providing the “Ordered Redelivery
of Messages” feature, which guarantees the correct ordering of redelivered messages as well.

In order to provide this guarantee, WebLogic JMS must impose certain constraints. They are:

Single consumers — ordered redelivery is only guaranteed when there is a single
consumer. If there are multiple consumers, then there are no guarantees about the order in
which any individual consumer will receive messages.

Note: With respect to MDBs (message-driven beans), the number of consumers is a
function of the number of MDB instances deployed for a given MDB. The initial and
maximum values for the number of instances must be set to 1. Otherwise no ordering
guarantees can be made with respect to redelivered messages.

Sort order — if a given destination is sorted, has JMS destination keys defined, and
another message is produced such that the message would be placed at the top of the
ordering, then no guarantee can be made between the redelivery of an existing message
and the delivery of the incoming message.

Message selection — if a consumer is using a selector, then ordering on redelivery is only
guaranteed between the message being redelivered and other messages that match the
criteria for that selector. There are no guarantees of order with respect to messages that do
not match the selector.

Redelivery delay — if a message has a redelivery delay period and is recovered or rolled
back, then it is unavailable for the delay period. During that period, other messages can be
delivered before the delayed message—even though these messages were sent after the
delayed message.

Messages pending recovery — ordered redelivery does not apply to redelivered messages
that end up in a pending recovery state due to a server failure or a system reboot.

Required Message Pipeline Setting for the Messaging Bridge and MDBs
For asynchronous consumers or JMS applications using the WebLogic Messaging Bridge or
MDBs, the size of the message pipeline must be set to 1. The pipeline size is set using the
Messages Maximum attribute on the JMS connection factory used by the receiving application.
Any value higher than 1 means there may be additional in-flight messages that will appear ahead
of a redelivered message. MDB applications must define an application-specific JMS connection
factory and set the Messages Maximum attribute value to 1 on that connection factory, and then
reference the connection factory in the EJB descriptor for their MDB application.

http://java.sun.com/products/jms/docs.html

Managing Your App l ica t ions

5-6 Programming WebLogic JMS

For more information about programming EJBs, see “Designing Message-Driven EJBs” in
Programming WebLogic Enterprise JavaBeans.

Performance Limitations
JMS applications that implement the Ordered Redelivery feature will incur performance
degradation for asynchronous consumers using JTA transactions (specifically, MDBs and the
WebLogic Messaging Bridge). This is caused by a mandatory reduction in the number of in-flight
messages to exactly 1, so messages are not aggregated when they are sent to the client.

Handling Expired Messages
WebLogic JMS has an active message Expiration Policy feature that allows you to control how
the system searches for expired messages and how it handles them when they are encountered.
This feature ensures that expired messages are cleaned up immediately, either by simply
discarding expired messages, discarding expired messages and logging their removal, or
redirecting expired messages to an error destination configured on the local JMS server.

Setting Message Delivery Times
You can schedule message deliveries to an application for specific times in the future. Message
deliveries can be deferred for short periods of time (such as seconds or minutes) or for long
stretches of time (for example, hours later for batch processing). Until that delivery time, the
message is essentially invisible until it is delivered, allowing you to schedule work at a particular
time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send messages on
a recurring basis, a received scheduled message must be sent back to its original destination.
Typically, the receive, the send, and any associated work should be under the same transaction to
ensure exactly-once semantics.

Setting a Delivery Time on Producers
Support for setting and getting a time-to-deliver on an individual producer is provided through
the weblogic.jms.extensions.WLMessageProducer interface, which is an extension to the
javax.jms.MessageProducer interface. To define a time-to-deliver on an individual producer,
use the following methods:

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

Set t ing Message De l ive r y T imes

Programming WebLogic JMS 5-7

public void setTimeToDeliver(

 long timeToDeliver

) throws JMSException;

public long getTimeToDeliver(

) throws JMSException;

For more information on the WLMessageProducer class, refer to the
weblogic.jms.extensions.WLMessageProducer Javadoc.

Setting a Delivery Time on Messages
The DeliveryTime is a JMS message header field that defines the earliest absolute time at which
the message can be delivered. That is, the message is held by the messaging system and is not
given to any consumers until that time.

As a JMS header field, the DeliveryTime can be used to sort messages in a destination or to
select messages. For purposes of data type conversion, the delivery time is stored as a long
integer.

Note: Setting a delivery time value on a message has no effect on this field, because JMS will
always override the value with the producer’s value when the message is sent or
published. The message delivery time methods described here are similar to other JMS
message fields that are set through the producer, including the delivery mode, priority,
time-to-deliver, time-to-live, redelivery delay, and redelivery limit fields. Specifically,
the setting of these fields is reserved for JMS providers, including WebLogic JMS.

The support for setting and getting the delivery time on a message is provided through the
weblogic.jms.extensions.WLMessage interface, which is an extension to the
javax.jms.Message interface. To define a delivery time on a message, use the following
methods:

public void setJMSDeliveryTime(

 long deliveryTime

) throws JMSException;

public long getJMSDeliveryTime(

) throws JMSException;

For more information on the WLMessage class, refer to the
weblogic.jms.extensions.WLMessage Javadoc.

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLMessageProducer.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLMessage.html

Managing Your App l ica t ions

5-8 Programming WebLogic JMS

Overriding a Delivery Time
When a producer is created it inherits its TimeToDeliver attribute, expressed in milliseconds,
from the connection factory used to create the connection that the producer is a part of. Regardless
of what time-to-deliver is set on the producer, the destination to which a message is being sent or
published can override the setting. An administrator can set the TimeToDeliverOverride
attribute on a destination in either a relative or scheduled string format.

Interaction With the Time-to-Live Value
If the specified time-to-live value (JMSExpiration) is less than or equal to the specified
time-to-deliver value, then the message delivery succeeds. However, the message is then silently
expired.

Setting a Relative Time-to-Deliver Override
A relative TimeToDeliverOverride is a String specified as an integer, and is configurable using
the Administration Console.

Setting a Scheduled Time-to-Deliver Override
A scheduled TimeToDeliverOverride can also be specified using the
weblogic.jms.extensions.Schedule class, which provides methods that take a schedule and
return the next scheduled time for delivering messages.

Table 5-1 Message Delivery Schedule

Example Description

0 0 0,30 * * * * Exact next nearest half-hour

* * 0,30 4-5 * * * Anytime in the first minute of the half hours in the 4 A.M. and
5 A.M. hours

* * * 9-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

* * * * 8-14 * 2 The second Tuesday of the month

* * * 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

* * * * * 31 * The last day of the month

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/Schedule.html

Set t ing Message De l ive r y T imes

Programming WebLogic JMS 5-9

A cron-like string is used to define the schedule. The format is defined by the following BNF
syntax:

schedule := millisecond second minute hour dayOfMonth month

 dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList

secondList := secondItem [, secondList]

secondItem := secondValue | secondRange

SecondRange := secondValue - secondValue

Similar BNF statements for milliseconds, minute, hour, day-of-month, month, and day-of-week
can be derived from the second syntax. The values for each field are defined as non-negative
integers in the following ranges:

milliSecondValue := 0-999

milliSecondValue := 0-999

secondValue := 0-59

minuteValue := 0-59

hourValue := 0-23

dayOfMonthValue := 1-31

monthValue := 1-12

dayOfWeekValue := 1-7

Note: These values equate to the same ranges that the java.util.Calendar class uses, except
for monthValue. The java.util.Calendar range for monthValue is 0-11, rather than
1-12.

Using this syntax, each field can be represented as a range of values indicating all times between
the two times. For example, 2-6 in the dayOfWeek field indicates Monday through Friday,

* * * * 15 4 1 The next time April 15th occurs on a Sunday

0 0 0 1 * * 2-6;0 0 0 2 * * 1,7 1 A.M. on weekdays; 2 A.M. on weekends

Table 5-1 Message Delivery Schedule

Example Description

Managing Your App l ica t ions

5-10 Programming WebLogic JMS

inclusive. Each field can also be specified as a comma-separated list. For instance, a minute field
of 0,15,30,45 means every quarter hour on the quarter hour. Lastly, each field can be defined
as both a set of individual values and ranges of values. For example, an hour field of 9-17,0
indicates between the hours of 9 A.M. and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

If multiple schedules are supplied (using a semi-colon (;) as the separator), the next
scheduled time for the set is determined using the schedule that returns the soonest value.
One use for this is for specifying schedules that change based on the day of the week (see
the final example below).

A value of 1 (one) for the dayOfWeek equates to Sunday.

A value of * means every time for that field. For instance, a * in the Month field means
every month. A * in the Hour field means every hour.

A value of l or last (not case sensitive) indicates the greatest possible value for a field.

If a day-of-month is specified that exceeds the normal maximum for a month, then the
normal maximum for that month will be specified. For example, if it is February during a
leap year and 31 was specified, then the scheduler will schedule as if 29 was specified
instead. This means that setting the month field to 31 always indicates the last day of the
month.

If milliseconds are specified, they are rounded down to the nearest 50th of a second. The
values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded to 0-39 and 50-999 gets
rounded to 39-999.

Note: When a Calendar is not supplied as a method parameter to one of the static methods in
this class, the calendar used is a java.util.GregorianCalendar with a default
java.util.TimeZone and a default java.util.Locale.

JMS Schedule Interface
The weblogic.jms.extensions.schedule class has methods that will return the next
scheduled time that matches the recurring time expression. This expression uses the same syntax
as the TimeToDeliverOverride. The time returned in milliseconds can be relative or absolute.

For more information on the WLSession class, refer to the
weblogic.jms.extensions.Schedule Javadoc.

You can define the next scheduled time after the given time using the following method:

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/Schedule.html

Managing Connect i ons

Programming WebLogic JMS 5-11

public static Calendar nextScheduledTime(

 String schedule,

 Calendar calendar

) throws ParseException {

You can define the next scheduled time after the current time using the following method:

public static Calendar nextScheduledTime(

 String schedule,

) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds using the
following method:

public static long nextScheduledTimeInMillis(

 String schedule,

 long timeInMillis

) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds using the
following method:

public static long nextScheduledTimeInMillisRelative(

 String schedule,

 long timeInMillis

) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds using the
following method:

public static long nextScheduledTimeInMillisRelative(

 String schedule

) throws ParseException {

Managing Connections
The following sections describe how to manage connections:

Defining a Connection Exception Listener

Accessing Connection Metadata

Starting, Stopping, and Closing a Connection

Managing Your App l ica t ions

5-12 Programming WebLogic JMS

Defining a Connection Exception Listener
An exception listener asynchronously notifies an application whenever a problem occurs with a
connection. This mechanism is particularly useful for a connection waiting to consume messages
that might not be notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by a
connection, but to deliver those exceptions that would not be otherwise be delivered.

You can define an exception listener for a connection using the following Connection method:

public void setExceptionListener(

 ExceptionListener listener

) throws JMSException

You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it encounters a
problem with a connection using the following ExceptionListener method:

public void onException(

 JMSException exception

)

The JMS Provider specifies the exception that describes the problem when calling the method.

You can access the exception listener for a connection using the following Connection method:

public ExceptionListener getExceptionListener(

) throws JMSException

Accessing Connection Metadata
You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData(

) throws JMSException

Managing Connect i ons

Programming WebLogic JMS 5-13

This method returns a ConnectionMetaData object that enables you to access JMS metadata.
The following table lists the various type of JMS metadata and the get methods that you can use
to access them.

For more information about the ConnectionMetaData class, see the
javax.jms.ConnectionMetaData Javadoc.

Starting, Stopping, and Closing a Connection
To control the flow of messages, you can start and stop a connection temporarily using the
start() and stop() methods, respectively, as follows.

The start() and stop() method details are as follows:

public void start(

) throws JMSException

Table 5-2 JMS Metadata

JMS Metadata Get Method

Version public String getJMSVersion(
) throws JMSException

Major version public int getJMSMajorVersion(
) throws JMSException

Minor version public int getJMSMinorVersion(
) throws JMSException

Provider name public String getJMSProviderName(
) throws JMSException

Provider version public String getProviderVersion(
) throws JMSException

Provider major version public int getProviderMajorVersion(
) throws JMSException

Provider minor version public int getProviderMinorVersion(
) throws JMSException

JMSX property names public Enumeration getJMSXPropertyNames(
) throws JMSException

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionMetaData.html

Managing Your App l ica t ions

5-14 Programming WebLogic JMS

public void stop(

) throws JMSException

A newly created connection is stopped—no messages are received until the connection is started.
Typically, other JMS objects are set up to handle messages before the connection is started, as
described in “Setting Up a JMS Application” on page 4-2. Messages may be produced on a
stopped connection, but cannot be delivered to a stopped connection.

Once started, you can stop a connection using the stop() method. This method performs the
following steps:

Pauses the delivery of all messages. No applications waiting to receive messages will
return until the connection is restarted or the time-to-live value associated with the message
is reached.

Waits until all message listeners that are currently processing messages have completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates a
connection. When a connection is no longer being used, you should close it to free up resources.
A connection can be closed using the following method:

public void close(

) throws JMSException

This method performs the following steps to execute an orderly shutdown:

Terminates the receipt of all pending messages. Applications may return a message or null
if a message was not available at the time of the close.

Waits until all message listeners that are currently processing messages have completed.

Rolls back in-process transactions on its transacted sessions (unless such transactions are
part of an external JTA user transaction). For more information about JTA user
transactions, see “Using JTA User Transactions” on page 12-4.

Does not force an acknowledge of client-acknowledged sessions. By not forcing an
acknowledge, no messages are lost for queues and durable subscriptions that require
reliable processing.

When you close a connection, all associated objects are also closed. You can continue to use the
message objects created or received via the connection, except the received message’s
acknowledge() method. Closing a closed connection has no effect.

Note: Attempting to acknowledge a received message from a closed connection’s session
throws an IllegalStateException.

Managing Sess ions

Programming WebLogic JMS 5-15

Managing Sessions
The following sections describe how to manage sessions, including:

Defining a Session Exception Listener

Closing a Session

Defining a Session Exception Listener
An exception listener asynchronously notifies a client in the event a problem occurs with a
session. This is particularly useful for a session waiting to consume messages that might not be
notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by a session,
only to deliver those exceptions that would otherwise be undelivered.

You can define an exception listener for a session using the following WLSession method:

public void setExceptionListener(

 ExceptionListener listener

) throws JMSException

You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it encounters a
problem with a session using the following ExceptionListener method:

public void onException(

 JMSException exception

)

The JMS Provider specifies the exception encountered that describes the problem when calling
the method.

You can access the exception listener for a session using the following WLSession method:

public ExceptionListener getExceptionListener(

) throws JMSException

Note: Because there can only be one thread per session, an exception listener and message
listener (used for asynchronous message delivery) cannot execute simultaneously.
Consequently, if a message listener is executing at the time a problem occurs, execution
of the exception listener is blocked until the message listener completes its execution. For

Managing Your App l ica t ions

5-16 Programming WebLogic JMS

more information about message listeners, see “Receiving Messages Asynchronously”
on page 4-28.

Closing a Session
As with connections, a JMS Provider allocates a significant amount of resources when it creates
a session. When a session is no longer being used, it is recommended that it be closed to free up
resources. A session can be closed using the following Session method:

public void close(

) throws JMSException

Note: The close() method is the only Session method that can be invoked from a thread that
is separate from the session thread.

This method performs the following steps to execute an orderly shutdown:

Terminates the receipt of all pending messages. Applications may return a message or null
if a message was not available at the time of the close.

Waits until all message listeners that are currently processing messages have completed.

Rolls back in-process transactions (unless such transactions are part of external JTA user
transaction). For more information about JTA user transactions, see “Using JTA User
Transactions” on page 12-4.

Does not force an acknowledge of client acknowledged sessions, ensuring that no
messages are lost for queues and durable subscriptions that require reliable processing.

When you close a session, all associated producers and consumers are also closed.

Note: If you want to issue the close() method within an onMessage() method call, the
system administrator must select the Allow Close In OnMessage check box when
configuring the connection factory.

Managing Destinations
The following sections describe how to create and delete destinations:

Dynamically Creating Destinations

Dynamically Deleting Destinations

Managing Dest inat ions

Programming WebLogic JMS 5-17

Dynamically Creating Destinations
You can create destinations dynamically using:

Using JMS Module Helper to Manage Applications

Using Temporary Destinations

The associated procedures for creating dynamic destinations are described in the following
sections.

Dynamically Deleting Destinations
You can dynamically delete JMS destinations (queue or topic) using any of the following
methods:

“Using JMS Module Helper to Manage Applications” on page 6-1

Administration console

User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it’s not necessary to
redeploy the JMS server for the deletion to take effect. The associated procedures for dynamically
deleting destinations are described in the following sections.

Preconditions for Deleting Destinations
In order to successfully delete a destination, the following preconditions must be met:

The destination must not be a member of a distributed destination. For more information,
see “Using Distributed Destinations” on page 8-1.

The destination must not be the error destination for some other destination. For more
information, see .

If either of these preconditions cannot be met, then the deletion will not be allowed.

What Happens when a Destination is Deleted
When a destination is deleted, the following behaviors and semantics apply:

Physical deletion of existing messages — all durable subscribers for the deleted destination
are permanently deleted. All messages, persistent and non-persistent, stored in the deleted
destination are permanently removed from the messaging system.

Managing Your App l ica t ions

5-18 Programming WebLogic JMS

No longer able to create producers, consumers, and browsers — once a destination is
deleted, applications will no longer be able to create producers, consumers, or browsers for
the deleted destination. Any attempt to do so will result in the application receiving an
InvalidDestinationException — as if the destination does not exist.

Closing of consumers — all existing consumers for the deleted destination are closed. The
closing of a consumer generates a ConsumerClosedException, which is delivered to the
ExceptionListener, if any, of the parent session, and which will read “Destination was
deleted”.

When a consumer is closed, if it has an outstanding receive() operation, then that
operation is cancelled and the caller receives a null indicating that no message is
available. Attempts by an application to do anything but close() a closed consumer will
result in an IllegalStateException.

Closing of browsers — all browsers for the deleted destination are closed. Attempts by an
application to do anything but close() a closed browser will result in an
IllegalStateException. Closing of a browser implicitly closes all enumerations
associated with the browser.

Closing of enumerations — all enumerations for the deleted destination are closed. The
behavior after an enumeration is closed depends on the last call before the enumeration
was closed. If a call to hasMoreElements() returns a value of true, and no subsequent
call to nextElement() has been made, then the enumeration guarantees that the next
element can be enumerated. This produces the specifics. When the last call before the close
was to hasMoreElements(), and the value returned was true, then the following
behaviors apply:

– The first call to nextElement() will return a message.

– Subsequent calls to nextElement() will throw a NoSuchElementException.

– Calls to hasMoreElements() made before the first call to nextElement() will return
true.

– Calls to hasMoreElements() made after the first call to nextElement() will return
false.

If a given enumeration has never been called, or the last call before the close was to
nextElement(), or the last call before the close was to hasMoreElements() and the
value returned was false, then the following behaviors apply:

– Calls to hasMoreElements() will return false.

– Calls to nextElement() will throw a NoSuchElementException.

Managing Dest inat ions

Programming WebLogic JMS 5-19

Blocking send operations cancelled — all blocking send operations posted against the
deleted destination are cancelled. Send operations waiting for quota will receive a
ResourceAllocationException. For more information on using blocking send
operations.

Uncommitted transactions unaffected — the deletion of a destination does not affect
existing uncommitted transactions. Any uncommitted work associated with a deleted
destination is allowed to complete as part of the transaction. However, since the destination
is deleted, the net result of all operations (rollback, commit, etc.) is the deletion of the
associated messages.

Message Timestamps for Troubleshooting Deleted Destinations
If a destination with persistent messages is deleted and then immediately recreated while the JMS
server is not running, the JMS server will compare the version number of the destination (using
the CreationTime field in the configuration config.xml file) and the version number of the
destination in the persistent messages. In this case, the left over persistent messages for the older
destination will have an older version number than the version number in the config.xml file
for the recreated destination, and when the JMS server is rebooted, the left over persistent
messages are simply discarded.

However, if a persistent message somehow has a version number that is newer than the version
number in the config.xml for the recreated destination, then either the system clock was rolled
back when the destination was deleted and recreated (while the JMS server was not running), or
a different config.xml is being used. In this situation, the JMS server will fail to boot. To save
the persistent message, you can set the version number (the CreationTime field) in the
config.xml to match the version number in the persistent message. Otherwise, you can change
the version number in the config.xml so that it is newer than the version number in the
persistent message; this way, the JMS server can delete the message when it is rebooted.

Deleted Destination Statistics
Statistics for the deleted destination and the hosting JMS server are updated as the messages are
physically deleted. However, the deletion of some messages can be delayed pending the outcome
of another operation. This includes messages sent and/or received in a transaction, as well as
unacknowledged non-transactional messages received by a client.

Managing Your App l ica t ions

5-20 Programming WebLogic JMS

Using Temporary Destinations
Temporary destinations enable an application to create a destination, as required, without the
system administration overhead associated with configuring and creating a server-defined
destination.

JMS applications can use the JMSReplyTo header field to return a response to a request. The
sender application may optionally set the JMSReplyTo header field of its messages to its
temporary destination name to advertise the temporary destination that it is using to other
applications.

Temporary destinations exist only for the duration of the current connection, unless they are
removed using the delete() method, described in “Deleting a Temporary Destination” on
page 5-21.

Because messages are never available if the server is restarted, all PERSISTENT messages are
silently made NON_PERSISTENT. As a result, temporary destinations are not suitable for business
logic that must survive a restart.

Note: Temporary destinations are enabled by default via the JMS server's Hosting
Temporary Template attribute. However, if you want to create temporary destinations
with specific settings, you need to modify the default Temporary Template values
using the JMS server's Temporary Template and Module Containing Temporary
Template attributes, as explained in “Configure general JMS server properties” in the
Administration Console Online Help.

The following sections describe how to create a temporary queue (PTP) or temporary topic
(Pub/Sub).

Creating a Temporary Queue
You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue(

) throws JMSException

For example, to create a reference to a TemporaryQueue that will exist only for the duration of
the current connection, use the following method call:
QueueSender = Session.createTemporaryQueue();

Creating a Temporary Topic
You can create a temporary topic using the following TopicSession method:

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServerGeneral.html

Set t ing Up Durab le Subsc r ip t ions

Programming WebLogic JMS 5-21

public TemporaryTopic createTemporaryTopic(

) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the duration of the
current connection, use the following method call:
TopicPublisher = Session.createTemporaryTopic();

Deleting a Temporary Destination
When you finish using a temporary destination, you can delete it (to release associated resources)
using the following TemporaryQueue or TemporaryTopic method:

public void delete(

) throws JMSException

Setting Up Durable Subscriptions
WebLogic JMS supports durable and non-durable subscriptions.

For durable subscriptions, WebLogic JMS stores a message in a persistent file or database until
the message has been delivered to the subscribers or has expired, even if those subscribers are not
active at the time that the message is delivered. A subscriber is considered active if the Java object
that represents it exists. Durable subscriptions are supported for Pub/Sub messaging only.

Note: Durable subscriptions cannot be created for distributed topics. However, you can still
create a durable subscription on distributed topic member and the other topic members
will forward the messages to the member that has the durable subscription. For more
information on using distributed topics, see “Using Distributed Destinations” on
page 8-1.

For non-durable subscriptions, WebLogic JMS delivers messages only to applications with an
active session. Messages sent to a topic while an application is not listening are never delivered
to that application. In other words, non-durable subscriptions last only as long as their subscriber
objects. By default, subscribers are non-durable.

The following sections describe:

Defining the Persistent Store

Defining the Client ID

Creating Subscribers for a Durable Subscription

Best Practice: Always Close Failed JMS ClientIDs

Managing Your App l ica t ions

5-22 Programming WebLogic JMS

Deleting Durable Subscriptions

Modifying Durable Subscriptions

Managing Durable Subscriptions

Defining the Persistent Store
You must configure a persistent file or database store and assign it to your JMS server so
WebLogic JMS can store a message until it has been delivered to the subscribers or has expired.

Create a JMS file store or JMS JDBC backing store using the Stores node.

Target the configured store to your JMS server by selecting it from the Store field’s
drop-down list on the JMS Server → Configuration → General tab.

Note: No two JMS servers can use the same backing store.

Defining the Client ID
To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note: The JMS client ID is not necessarily equivalent to the WebLogic Server username, that
is, a name used to authenticate a user in the WebLogic security realm. You can, of course,
set the JMS client ID to the WebLogic Server username, if it is appropriate for your JMS
application.

The client ID can be supplied in two ways:

The first method is to configure the connection factory with the client ID. For WebLogic
JMS, this means adding a separate connection factory definition during configuration for
each client ID. Applications then look up their own topic connection factories in JNDI and
use them to create connections containing their own client IDs. For more information about
configuring a connection factory with a client ID.

Alternatively, the preferred method is for an application that can set its client ID in the
connection after the connection is created by calling the following connection method:

public void setClientID(
 String clientID
) throws JMSException

You must specify a unique client ID. If you use this alternative approach, you can use the
default connection factory (if it is acceptable for your application) and avoid the need to

Set t ing Up Durab le Subsc r ip t ions

Programming WebLogic JMS 5-23

modify the configuration information. However, applications with durable subscriptions
must ensure that they call setClientID() immediately after creating their topic
connection.

If a client ID is already defined for the connection, an IllegalStateException is
thrown. If the specified client ID is already defined for another connection, an
InvalidClientIDException is thrown.

Note: When specifying the client ID using the setClientID() method, there is a risk that
a duplicate client ID may be specified without throwing an exception. For example,
if the client IDs for two separate connections are set simultaneously to the same value,
a race condition may occur and the same value may be assigned to both connections.
You can avoid this risk of duplication by specifying the client ID during
configuration.

To display a client ID and test whether or not a client ID has already been defined, use the
following Connection method:

public String getClientID(
) throws JMSException

Note: Support for durable subscriptions is a feature unique to the Pub/Sub messaging model, so
client IDs are used only with topic connections; queue connections also contain client
IDs, but JMS does not use them.

Durable subscriptions should not be created for a temporary topic, because a temporary
topic is designed to exist only for the duration of the current connection.

Creating Subscribers for a Durable Subscription
You can create subscribers for a durable subscription using the following TopicSession
methods:

public TopicSubscriber createDurableSubscriber(

 Topic topic,

 String name

) throws JMSException

public TopicSubscriber createDurableSubscriber(

 Topic topic,

 String name,

 String messageSelector,

 boolean noLocal

) throws JMSException

Managing Your App l ica t ions

5-24 Programming WebLogic JMS

You must specify the name of the topic for which you are creating a subscriber, and the name of
the durable subscription.

Note: Valid durable subscription names can not include the following characters: comma “,”,
equals “=”, colon “:”, asterisk “*”, percent “%”, or question mark”?”. '

You may also specify a message selector for filtering messages and a noLocal flag (described
later in this section). Message selectors are described in more detail in “Filtering Messages” on
page 5-34. If you do not specify a messageSelector, by default all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same topic.
Because topic messages are delivered to all subscribers, an application can receive messages it
has published itself. To prevent this, a JMS application can set a noLocal flag to true. The
noLocal value defaults to false.

The durable subscription name must be unique per client ID. For information on defining the
client ID for the connection, see “Defining the Client ID” on page 5-22.

Only one session can define a subscriber for a particular durable subscription at any given time.
Multiple subscribers can access the durable subscription, but not at the same time. Durable
subscriptions are stored within the file or database.

Best Practice: Always Close Failed JMS ClientIDs
As a best practice, JMS clients should always call the close() method instead of allowing the
application to rely on the JVM's garbage collection to clean up failed JMS connections. This is
particularly important for durable subscription ClientIDs because the JMS Automatic Reconnect
feature keeps a reference to such failed JMS connections. Therefore, always use
connection.close() to clean up your connections. Also, consider using a finally block to
ensure that your connection resources are cleaned up. Otherwise, WebLogic Server allocates
system resources to keep the connection available.

Set t ing Up Durab le Subsc r ip t ions

Programming WebLogic JMS 5-25

The following snippet demonstrates using close() and finally in a JMS client to clean up
failed connection resources:

 JMSConnection con = null;

 try {

 con = cf.createConnection();

 con.setClientID("Fred");

 // Do some I/O stuff;

 }

 finally {

 if (con != null) con.close();

 }

For more information about the JMS Automatic Reconnect feature, see “Automatic JMS Client
Failover” on page 14-2.

Deleting Durable Subscriptions
To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe(

 String name

) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:

A TopicSubscriber is still active on the session.

A message received by the durable subscription is part of a transaction or has not yet been
acknowledged in the session.

Note: You can also delete durable subscriptions from the Administration Console. For
information on managing durable subscriptions, see “Managing Durable Subscriptions”
on page 5-26.

Modifying Durable Subscriptions
To modify a durable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in “Deleting Durable Subscriptions”
on page 5-25.

Managing Your App l ica t ions

5-26 Programming WebLogic JMS

This step is optional. If not explicitly performed, the deletion will be executed implicitly
when the durable subscription is recreated in the next step.

2. Use the methods described in “Creating Subscribers for a Durable Subscription” on page 5-23
to recreate a durable subscription of the same name, but specifying a different topic name,
message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: When recreating a durable subscription, be careful to avoid creating a durable
subscription with a duplicate name. For example, if you attempt to delete a durable
subscription from a JMS server that is unavailable, the delete call fails. If you
subsequently create a durable subscription with the same name on a different JMS server,
you may experience unexpected results when the first JMS server becomes available.
Because the original durable subscription has not been deleted, when the first JMS server
again becomes available, there will be two durable subscriptions with duplicate names.

Managing Durable Subscriptions
You can monitor and manage durable topic subscribers using either the Administration Console
or through public runtime APIs. This functionality also enables you to view and browse all
messages, and to manipulate most messages on durable subscribers. This includes message
browsing (for sorting), message manipulation (such as move and delete), and message import and
export. For more information, see “Managing JMS Messages” in Configuring and Managing
WebLogic JMS.

Setting and Browsing Message Header and Property
Fields

WebLogic JMS provides a set of standard header fields that you can define to identify and route
messages. In addition, property fields enable you to include application-specific header fields
within a message, extending the standard set. You can use the message header and property fields
to convey information between communicating processes.

The primary reason for including data in a property field rather than in the message body is to
support message filtering via message selectors. Except for XML message extensions, data in the
message body cannot be accessed via message selectors. For example, suppose you use a property
field to assign high priority to a message. You can then design a message consumer containing a
message selector that accesses this property field and selects only messages of expedited priority.
For more information about selectors, see “Filtering Messages” on page 5-34.

http://e-docs.bea.com/wls/docs92/jms_admin/manage_msg.html#ManagingJMSMessages

Set t ing and Browsing Message Header and Proper t y F ie lds

Programming WebLogic JMS 5-27

Setting Message Header Fields
JMS messages contain a standard set of header fields that are always transmitted with the
message. They are available to message consumers that receive messages, and some fields can be
set by the message producers that send messages. Once a message is received, its header field
values can be modified.

When modifying (overriding) header field values, you need to take into consideration instances
when message fields are overwritten by the JMS subsystem. For instance, setting the priority on
a producer affects the priority of the message, but a value supplied to the send() method
overrides the setting on the producer. Similarly, values set on a destination override values set by
the producer or values supplied to the send() method. The only way to verify the value of header
fields is to query the message after a send() method.

For a description of the standard messages header fields, see “Message Header Fields” on
page 2-20.

The following table lists the Message class set and get methods for each of the supported data
types.
Note: In some cases, the send() method overrides the header field value set using the set()

method, as indicated in the following table.

Table 5-3 JMS Header Field Methods

Header Field Set Method Get Method

JMSCorrelationID public void
setJMSCorrelationID(
 String correlationID
) throws JMSException

public String
getJMSCorrelationID(
) throws JMSException

public byte[]
getJMSCorrelationIDAsBytes(
) throws JMSException

JMSDestination1 public void
setJMSDestination(
 Destination destination
) throws JMSException

public Destination
getJMSDestination(
) throws JMSException

Managing Your App l ica t ions

5-28 Programming WebLogic JMS

JMSDeliveryMode1 public void
setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSDeliveryTime1 public void
setJMSDeliveryTime(
 long deliveryTime
) throws JMSException

public long
getJMSDeliveryTime(
) throws JMSException

JMSDeliveryMode1 public void
setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSMessageID1 public void setJMSMessageID(
 String id
) throws JMSException

Note: In addition to the set method, the
weblogic.jms.extensions
.JMSRuntimeHelper class
provides the following methods
to convert between
pre-WebLogic JMS 6.0 and 6.1
JMSMessageID formats:

public void
oldJMSMessageIDToNew(
 String id,
 long timeStamp
) throws JMSException

public void
newJMSMessageIDToOld(
 String id,
 long timeStamp
) throws JMSException

public String getJMSMessageID(
) throws JMSException

JMSPriority1 public void setJMSPriority(
 int priority
) throws JMSException

public int getJMSPriority(
) throws JMSException

Table 5-3 JMS Header Field Methods

Header Field Set Method Get Method

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSRuntimeHelper.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSRuntimeHelper.html

Set t ing and Browsing Message Header and Proper t y F ie lds

Programming WebLogic JMS 5-29

The examples.jms.sender.SenderServlet example, provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\sender directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation, shows how to set
header fields in messages that you send and how to display message header fields after they are
sent.

For example, the following code, which appears after the send() method, displays the message
ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " +

msg.getJMSMessageID() + " to " +

msg.getJMSDestination());

JMSRedelivered1 public void
setJMSRedelivered(
 boolean redelivered
) throws JMSException

public boolean
getJMSRedelivered(
) throws JMSException

JMSRedeliveryLim

it1
public void
setJMSRedeliveryLimit(
 int redelivered
) throws JMSException

public int
getJMSRedeliveryLimit(
) throws JMSException

JMSReplyTo public void setJMSReplyTo(
 Destination replyTo
) throws JMSException

public Destination
getJMSReplyTo(
) throws JMSException

JMSTimeStamp1 public void setJMSTimeStamp(
 long timestamp
) throws JMSException

public long getJMSTimeStamp(
) throws JMSException

JMSType public void setJMSType(
 String type
) throws JMSException

public String getJMSType(
) throws JMSException

1. The corresponding set() method has no impact on the message header field when the send() method
is executed. If set, this header field value will be overridden during the send() operation.

Table 5-3 JMS Header Field Methods

Header Field Set Method Get Method

Managing Your App l ica t ions

5-30 Programming WebLogic JMS

Setting Message Property Fields
To set a property field, call the appropriate set method and specify the property name and value.
To read a property field, call the appropriate get method and specify the property name.

The sending application can set properties in the message, and the receiving application can
subsequently view them. The receiving application cannot change the properties without first
clearing them using the following clearProperties() method:

public void clearProperties(

) throws JMSException

This method does not clear the message header fields or body.

Note: The JMSX property name prefix is reserved for JMS. The connection metadata contains a
list of JMSX properties, which can be accessed as an enumerated list using the
getJMSXPropertyNames() method. For more information, see “Accessing Connection
Metadata” on page 5-12.

The JMS_ property name prefix is reserved for provider-specific properties; it is not
intended for use with standard JMS messaging.

The property field can be set to any of the following types: boolean, byte, double, float, int, long,
short, or string. The following table lists the Message class set and get methods for each of the
supported data types.

Table 5-4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

boolean public void setBooleanProperty(
 String name,
 boolean value
) throws JMSException

public boolean
getBooleanProperty(
 String name
) throws JMSException

byte public void setByteProperty(
 String name,
 byte value
) throws JMSException

public byte getByteProperty(
 String name
) throws JMSException

double public void setDoubleProperty(
 String name,
 double value
) throws JMSException

public double getDoubleProperty(
 String name
) throws JMSException

Set t ing and Browsing Message Header and Proper t y F ie lds

Programming WebLogic JMS 5-31

In addition to the set and get methods described in the previous table, you can use the
setObjectProperty() and getObjectProperty() methods to use the objectified primitive
values of the property type. When the objectified value is used, the property type can be
determined at execution time rather than during the compilation. The valid object types are
boolean, byte, double, float, int, long, short, and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames(

) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve the value
of each property field by passing the property field name to the appropriate get method, as
described in the previous table, based on the property field data type.

float public void setFloatProperty(
 String name,
 float value
) throws JMSException

public float getFloatProperty(
 String name
) throws JMSException

int public void setIntProperty(
 String name,
 int value
) throws JMSException

public int getIntProperty(
 String name
) throws JMSException

long public void setLongProperty(
 String name,
 long value) throws JMSException

public long getLongProperty(
 String name
) throws JMSException

short public void setShortProperty(
 String name,
 short value
) throws JMSException

public short getShortProperty(
 String name
) throws JMSException

String public void setStringProperty(
 String name,
 String value
) throws JMSException

public String getStringProperty(
 String name
) throws JMSException

Table 5-4 Message Property Set and Get Methods for Data Types (Continued)

Data Type Set Method Get Method

Managing Your App l ica t ions

5-32 Programming WebLogic JMS

The following table is a conversion chart for message properties. It allows you to identify the type
that can be read based on the type that has been written.

You can test whether or not a property value has been set using the following Message method:

public boolean propertyExists(

 String name

) throws JMSException

You specify a property name and the method returns a boolean value indicating whether or not
the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty("User", user);

msg.setStringProperty("Category", category);

msg.setIntProperty("Rating", rating);

For more information about message property fields, see “Message Property Fields” on
page 2-25 or the javax.jms.Message Javadoc.

Table 5-5 Message Property Conversion Chart

Property
Written As. . .

Can Be Read As. . .

boolea
n

byte double float int long short String

boolean X X

byte X X X X X

double X X

float X X X

int X X X

long X X

Object X X X X X X X X

short X X X X

String X X X X X X X X

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Set t ing and Browsing Message Header and Proper t y F ie lds

Programming WebLogic JMS 5-33

Browsing Header and Property Fields
Note: Only queue message header and property fields can be browsed. You cannot browse

topic message header and property fields.

You can browse the header and property fields of messages on a queue using the following
QueueSession methods:

public QueueBrowser createBrowser(

 Queue queue

) throws JMSException

public QueueBrowser createBrowser(

 Queue queue,

 String messageSelector

) throws JMSException

You must specify the queue that you wish to browse. You may also specify a message selector to
filter messages that you are browsing. Message selectors are described in more detail in “Filtering
Messages” on page 5-34.

Once you have defined a queue, you can access the queue name and message selector associated
with a queue browser using the following QueueBrowser methods:

public Queue getQueue(

) throws JMSException

public String getMessageSelector(

) throws JMSException

In addition, you can access an enumeration for browsing the messages using the following
QueueBrowser method:

public Enumeration getEnumeration(

) throws JMSException

The examples.jms.queue.QueueBrowser example, provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation, shows how to access
the header fields of received messages.

For example, the following code line is an excerpt from the QueueBrowser example and creates
the QueueBrowser object:

qbrowser = qsession.createBrowser(queue);

Managing Your App l ica t ions

5-34 Programming WebLogic JMS

The following provides an excerpt from the displayQueue() method defined in the
QueueBrowser example. In this example, the QueueBrowser object is used to obtain an
enumeration that is subsequently used to scan the queue’s messages.

 public void displayQueue(

) throws JMSException

 {

 Enumeration e = qbrowser.getEnumeration();

 Message m = null;

 if (! e.hasMoreElements()) {

 System.out.println("There are no messages on this queue.");

 } else {

 System.out.println("Queued JMS Messages: ");

 while (e.hasMoreElements()) {

 m = (Message) e.nextElement();

 System.out.println("Message ID " + m.getJMSMessageID() +

 " delivered " + new Date(m.getJMSTimestamp())

 " to " + m.getJMSDestination());

 }

 }

When a queue browser is no longer being used, you should close it to free up resources. For more
information, see “Releasing Object Resources” on page 4-32.

For more information about the QueueBrowser class, see the javax.jms.QueueBrowser
Javadoc.

Filtering Messages
In many cases, an application does not need to be notified of every message that is delivered to
it. Message selectors can be used to filter unwanted messages, and subsequently improve
performance by minimizing their impact on network traffic.

Message selectors operate as follows:

The sending application sets message header or property fields to describe or classify a
message in a standardized way.

The receiving applications specify a simple query string to filter the messages that they
want to receive.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueBrowser.html

F i l t e r ing Messages

Programming WebLogic JMS 5-35

Because message selectors cannot reference the contents (body) of a message, some information
may be duplicated in the message property fields (except in the case of XML messages).

You specify a selector when creating a queue receiver or topic subscriber, as an argument to the
QueueSession.createReceiver() or TopicSession.createSubscriber() methods,
respectively. For information about creating queue receivers and topic subscribers, see “Step 5:
Create Message Producers and Message Consumers Using the Session and Destinations” on
page 4-9.

The following sections describe how to define a message selector using SQL statements and
XML selector methods, and how to update message selectors. For more information about setting
header and property fields, see “Setting and Browsing Message Header and Property Fields” on
page 5-26 and “Setting Message Property Fields” on page 5-30, respectively.

Defining Message Selectors Using SQL Statements
A message selector is a boolean expression. It consists of a String with a syntax similar to the
where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')

and version > 3.0

hireyear between 1990 and 1992

or fireyear is not null

fireyear - hireyear > 4

The following example shows how to set a selector when creating a queue receiver that filters out
messages with a priority lower than 6.

String selector = "JMSPriority >= 6";

qsession.createReceiver(queue, selector);

The following example shows how to set the same selector when creating a topic subscriber.

String selector = "JMSPriority >= 6";

qsession.createSubscriber(topic, selector);

For more information about the message selector syntax, see the javax.jms.Message Javadoc.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Managing Your App l ica t ions

5-36 Programming WebLogic JMS

Defining XML Message Selectors Using XML Selector
Method
For XML message types, in addition to using the SQL selector expressions described in the
previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify the syntax
type, which must be set to xpath (XML Path Language) and an XPath expression. The XML path
language is defined in the XML Path Language (XPath) document, which is available at the XML
Path Language Web site at: http://www.w3.org/TR/xpath

Note: Pay careful attention to your XML message syntax, since malformed XML messages (for
example, a missing end tag) will not match any XML selector.

The method returns a null value under the following circumstances:

The message does not parse.

The message parses, but the element is not present.

If a message parses and the element is present, but the message contains no value (for
example, <order></order>).

For example, consider the following XML excerpt:

<order>

<item>

<id>007</id>

<name>Hand-held Power Drill</name>

<description>Compact, assorted colors.</description>

<price>$34.99</price>

</item>

<item>

<id>123</id>

<name>Mitre Saw</name>

<description>Three blades sizes.</description>

<price>$69.99</price>

</item>

<item>

<id>66</id>

<name>Socket Wrench Set</name>

http://www.w3.org/TR/xpath

F i l t e r ing Messages

Programming WebLogic JMS 5-37

<description>Set of 10.</description>

<price>$19.99</price>

</item>

</order>

The following example shows how to retrieve the name of the second item in the previous
example. This method call returns the string, Mitre Saw.

String sel = "JMS_BEA_SELECT(‘xpath’, ‘/order/item[2]/name/text()’) = ‘

Mitre Saw’”;

Pay careful attention to the use of double and single quotes and spaces. Note the use of single
quotes around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous example.
This method call returns the string, 66.

String sel = "JMS_BEA_SELECT(‘xpath’, ‘/order/item[3]/id/text()’) = ‘66

’”;

Displaying Message Selectors
You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector(

) throws JMSException

This method returns either the currently defined message selector or null if a message selector is
not defined.

Indexing Topic Subscriber Message Selectors To Optimize
Performance
For a certain class of applications, WebLogic JMS can significantly optimize topic subscriber
message selectors by indexing them. These applications typically have a large number of
subscribers, each with a unique identifier (like a user name), and they need to be able to quickly
send a message to a single subscriber, or to a list of subscribers. A typical example is an instant
messaging application where each subscriber corresponds to a different user, and each message
contains a list of one or more target users.

To activate optimized subscriber message selectors, subscribers must use the following syntax for
their selectors:

Managing Your App l ica t ions

5-38 Programming WebLogic JMS

"identifier IS NOT NULL"

where identifier is an arbitrary string that is not a predefined JMS message property (e.g.,
neither JMSCorrelationID nor JMSType). Multiple subscribers can share the same identifier.

WebLogic JMS uses this exact message selector syntax as a hint to build internal subscriber
indexes. Message selectors that do not follow the syntax, or that include additional OR and AND
clauses, are still honored, but do not activate the optimization.

Once subscribers have registered using this message selector syntax, a message published to the
topic can target specific subscribers by including one or more identifiers in the message’s user
properties, as illustrated in the following example:

// Set up a named subscriber, where "wilma" is the name of

// the subscriber and subscriberSession is a JMS TopicSession.

// Note that the selector syntax used activates the optimization.

TopicSubscriber topicSubscriber =

 subscriberSession.createSubscriber(

 (Topic)context.lookup("IMTopic"),

 "Wilma IS NOT NULL",

 /* noLocal= */ true);

// Send a message to subscribers "Fred" and "Wilma",

// where publisherSession is a JMS TopicSession. Subscribers

// with message selector expressions "Wilma IS NOT NULL"

// or "Fred IS NOT NULL" will receive this message.

TopicPublisher topicPublisher =

 publisherSession.createPublisher(

 (Topic)context.lookup("IMTopic");

TextMessage msg =

 publisherSession.createTextMessage("Hi there!");

msg.setBooleanProperty("Fred", true);

msg.setBooleanProperty("Wilma", true);

topicPublisher.publish(msg);

Notes:

The optimized message selector and message syntax is based on the standard JMS API;
therefore, applications that use this syntax will also work on versions of WebLogic JMS
that do not have optimized message selectors, as well as on non-WebLogic JMS

Sending XML Messages

Programming WebLogic JMS 5-39

products. However, these versions will not perform as well as versions that include this
enhancement.

The message selector optimization will have no effect on applications that use the
MULTICAST_NO_ACKNOWLEDGE acknowledge mode. These applications have no need no
need for the enhancement anyway, since the message selection occurs on the client side
rather than the server side.

Sending XML Messages
Note: This release does not support streaming. Only text and DOM representations of XML

documents are supported.

The WebLogic Server JMS API provides native support for the Document Object Model (DOM)
to send XML messages.

The following sections provide information on WebLogic JMS API extensions that provide
enhanced support for XML messages.

“WebLogic XML APIs” on page 5-39

Using a String Representation

Using a DOM Representation

WebLogic XML APIs
You can use the following WebLogic XML APIs for transformation of XML between String
and DOM representations:

XMLMessage-Use to send messages with XML content.

WLSession.createXMLMessage- Use to create an XML message.

It is possible for the payload of XMLMessage to be set using one XML representation and
retrieved using a different representation. For example, it is valid for the XMLMessage body to
be set using a String representation and be retrieved using a DOM representation.

Using a String Representation
Use the following steps to publish an XML message using a string type:

1. Serialize the XML to a StringWriter.

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/XMLMessage.html

Managing Your App l ica t ions

5-40 Programming WebLogic JMS

2. Call toString on the StringWriter and pass it into message.setText.

3. Publish the message.

Using a DOM Representation
Sending XML messages using a DOM representation provides a significant performance
improvement over sending messages as a String. Use the following steps to publish an XML
message using a Dom Representation:

1. If necessary, generate a DOM document from your XML source.

2. Pass the DOM document into XMLMessage.setDocument.

3. Publish the message.

Configuring and Managing WebLogic JMS 6-1

C H A P T E R 6

Using JMS Module Helper to Manage
Applications

The weblogic.jms.extensions.JMSModuleHelper class contains APIs that you can use to
programmatically create and manage JMS servers, Store-and-Forward Agents, and JMS system
resources.

“Configuring JMS System Resources Using JMSModuleHelper” on page 6-1

“Configuring JMS Servers and Store-and-Forward Agents” on page 6-2

“JMSModuleHelper Sample Code” on page 6-2

“Best Practices when Using JMSModuleHelper” on page 6-6

Configuring JMS System Resources Using
JMSModuleHelper

JMSModuleHelper provides the following API signatures to manage a system module and JMS
resources, such as queues and topics:

Create a resource

Create and modify resource

Delete a resource

Find and modify a resource

Find using a template

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSModuleHelper.html

Using JMS Module He lper t o Manage App l i cat i ons

6-2 Configuring and Managing WebLogic JMS

You can manage a system module, including the JMS resources it contains by providing the
domain MBean or by providing the initial context to the administration server in the API
signature. For more information on JMS system resources, see “Configuring JMS System
Resources” in the Administration Console Online Help.

Configuring JMS Servers and Store-and-Forward Agents
JMSModuleHelper provides the following method APIs to manage JMS servers and
Store-and-Forward Agents:

Create JMS servers and Store-and-Forward Agents

Delete JMS servers and Store-and-Forward Agents

Deploy JMS servers and Store-and-Forward Agents

Undelploy JMS servers and Store-and-Forward Agents

You can manage JMS servers and Store-and-Forward Agents by providing the domain MBean or
by providing the initial context to the administration server in the API signature. For more
information, see:

“Configuring JMS System Resources” in the Administration Console Help.

“Understanding the Store-and-Forward Service” in the Administration Console Help.

JMSModuleHelper Sample Code
This section provides sample code to create and delete a JMS system resource module.

Creating a JMS System Resource
The module contains a connection factory and a topic.

Listing 6-1 Create JMS System Resources

.

.

.

private static void createJMSUsingJMSModuleHelper(Context ctx){

System.out.println(

http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs92/saf_admin/overview.html

JMSModuleHe lper Sample Code

Configuring and Managing WebLogic JMS 6-3

"\n\n.... Configure JMS Resource for C API Topic Example\n\n");

try {

MBeanHome mbeanHome =

(MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

DomainMBean domainMBean = mbeanHome.getActiveDomain();

String domainMBeanName = domainMBean.getName();

ServerMBean[] servers = domainMBean.getServers();

String jmsServerName = "examplesJMSServer";

//

// create a JMSSystemResource "CapiTopic-jms"

//

String resourceName = "CapiTopic-jms";

JMSModuleHelper.createJMSSystemResource(

ctx,

resourceName,

servers[0].getName());

JMSSystemResourceMBean jmsSR =

JMSModuleHelper.findJMSSystemResource(

ctx,

resourceName);

JMSBean jmsBean = jmsSR.getJMSResource();

System.out.println("Created JMSSystemResource " + resourceName);

//

// create a JMSConnectionFactory "CConFac"

//

String factoryName = "CConFac";

String jndiName = "CConFac";

JMSModuleHelper.createConnectionFactory(

ctx,

resourceName,

factoryName,

jndiName,

servers[0].getName());

Using JMS Module He lper t o Manage App l i cat i ons

6-4 Configuring and Managing WebLogic JMS

JMSConnectionFactoryBean factory =

jmsBean.lookupConnectionFactory(factoryName);

System.out.println("Created Factory " + factory.getName());

//

// create a topic "CTopic"

//

String topicName = "CTopic";

String topicjndiName = "CTopic";

JMSModuleHelper.createTopic(

ctx,

resourceName,

jmsServerName,

topicName,

topicjndiName);

TopicBean topic = jmsBean.lookupTopic(topicName);

System.out.println("Created Topic " + topic.getName());

} catch (Exception e) {

System.out.println("Example configuration failed :" + e.getMessag

e());

e.printStackTrace();

}

}

.

.

.

Deleting a JMS System Resource
The following code removes JMS system resources.

Listing 6-2 Delete JMS System Resources

.

.

JMSModuleHe lper Sample Code

Configuring and Managing WebLogic JMS 6-5

.

private static void deleteJMSUsingJMSModuleHelper(Context ctx) {

System.out.println("\n\n.... Remove JMS System Resource for C API Top

ic Example\n\n");

try {

MBeanHome mbeanHome =

(MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

DomainMBean domainMBean = mbeanHome.getActiveDomain();

String domainMBeanName = domainMBean.getName();

ServerMBean[] servers = domainMBean.getServers();

String jmsServerName = "examplesJMSServer";

//

// delete JMSSystemResource "CapiTopic-jms"

//

String resourceName = "CapiTopic-jms";

JMSModuleHelper.deleteJMSSystemResource(

ctx,

resourceName

);

} catch (Exception e) {

System.out.println("Example configuration failed

:" + e.getMessage());

e.printStackTrace();

}

}

.

.

.

Using JMS Module He lper t o Manage App l i cat i ons

6-6 Configuring and Managing WebLogic JMS

Best Practices when Using JMSModuleHelper
This section provides best practices information when using JMSModuleHelper to configure
JMS servers and resources:

Trap for Null MBean objects (such as servers, JMS servers, modules) before trying to
manipulate the MBean object.

A create or delete method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay increases if
the environment contains multiple servers. It is recommended that you test for the
existence of the queue or topic, respectively, using the session createQueue() or
createTopic() method, rather than perform a JNDI lookup. By doing so, you can avoid
some of the propagation-specific delay.

For example, the following method, findQueue(), attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (

 QueueSession queueSession,

 String jmsServerName,

 String queueName,

 int retryCount,

 long retryInterval

) throws JMSException

{

 String wlsQueueName = jmsServerName + “/” + queueName;

 String command = “QueueSession.createQueue(“ +

wlsQueueName + “)”;

 long startTimeMillis = System.currentTimeMillis();

 for (int i=retryCount; i>=0; i--) {

try {

 System.out.println(“Trying “ + command);

 Queue queue = queueSession.createQueue(wlsQueueName);

 System.out.println(command + “succeeded after “ +

 (retryCount - i + 1) + “ tries in “ +

 (System.currentTimeMillis() - startTimeMillis) +

Best P rac t i ces when Us ing JMSModuleHe lper

Configuring and Managing WebLogic JMS 6-7

 “ millis.”);

 return queue;

} catch (JMSException je) {

 if (retryCount == 0) throw je;

}

try {

 System.out.println(command + “> failed, pausing “ +

 retryInterval + “ millis.”);

 Thread.sleep(retryInterval);

} catch (InterruptedException ignore) {}

 }

 throw new JMSException(“out of retries”);

}

You can then call the findQueue() method after the JMSModuleHelper class method call
to retrieve the dynamically created queue once it becomes available. For example:

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,

 queueName, jndiName);

Queue queue = findQueue(qsess, jmsServerName, queueName,

 retry_count, retry_interval);

Using JMS Module He lper t o Manage App l i cat i ons

6-8 Configuring and Managing WebLogic JMS

Programming WebLogic JMS 7-1

C H A P T E R 7

Using Multicasting with WebLogic
Server

Multicasting enables the delivery of messages to a select group of hosts that subsequently forward
the messages to subscribers. The following sections provide information on the benefits,
limitations, and configuration of using mutlticasing with WebLogic Server:

“Benefits of using Multicasting” on page 7-1

“Limitations of using Multicasting” on page 7-1

“Configuring Multicasting for WebLogic Server” on page 7-2

Benefits of using Multicasting
The benefits of multicasting include:

Near real-time delivery of messages to host group.

High scalability due to the reduction in the amount of resources required by the JMS server
to deliver messages to subscribers.

Limitations of using Multicasting
The limitations of multicasting include:

Multicast messages are not guaranteed to be delivered to all members of the host group.
For messages requiring reliable delivery and recovery, you should not use multicasting.

Using Mu l t i cas t ing wi th WebLogic Se rver

7-2 Programming WebLogic JMS

For interoperability with different versions of WebLogic Server, clients cannot have an
earlier release of WebLogic Server installed than the host. They must all have at least the
same version or higher.

For an example of when multicasting might be useful, consider a stock ticker. When accessing
stock quotes, timely delivery is more important than reliability. When accessing the stock
information in real-time, if all or a portion of the contents is not delivered, the client can simply
request the information to be resent. Clients would not want to have the information recovered,
in this case, as by the time it is redelivered, it would be out-of-date.

Configuring Multicasting for WebLogic Server
The following figure illustrates the steps required to set up multicasting.

Figure 7-1 Setting Up Multicasting

Note: Multicasting is only supported for the Pub/Sub messaging model, and only for
non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

Prerequisites for Multicasting
Before setting up multicasting, the connection factory and destination must be configured to
support multicasting, as follows:

For each connection factory, the system administrator configures the maximum number of
outstanding messages that can exist on a multicast session and whether the most recent or
oldest messages are discarded in the event the maximum is reached. If the message
maximum is reached, a DataOverrunException is thrown, and messages are
automatically discarded. These attributes are also dynamically configurable, as described in
“Dynamically Configuring Multicasting Configuration Attributes” on page 7-5.

Conf igur ing Mul t i cast ing fo r WebLog ic Se rve r

Programming WebLogic JMS 7-3

For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live) attributes
are specified. To better understand the TTL attribute setting, see “Example: Multicast
TTL” on page 7-5.

Note: It is strongly recommended that you seek the advice of your network administrator when
configuring the multicast IP address, port, and time-to-live attributes to ensure that the
appropriate values are set.

For more information, see “Configure topic multicast parameters” in the Administration Console
Online Help.

Step 1: Set Up the JMS Application, Creating Multicast
Session and Topic Subscriber
Set up the JMS application as described in “Setting Up a JMS Application” on page 4-2.
However, when creating sessions, as described in “Step 3: Create a Session Using the
Connection” on page 4-6, specify that the session would like to receive multicast messages by
setting the acknowledgeMode value to MULTICAST_NO_ACKNOWLEDGE.

Note: Multicasting is only supported for the Pub/Sub messaging model for non-durable
subscribers. An attempt to create a durable subscriber on a multicast session will cause a
JMSException to be thrown.

For example, the following method illustrates how to create a multicast session for the Pub/Sub
messaging model.

tsession = tcon.createTopicSession(

 false,

 WLSession.MULTICAST_NO_ACKNOWLEDGE

);

Note: On the client side, each multicasting session requires one dedicated thread to retrieve
messages off the socket. Therefore, you should increase the JMS client-side thread pool
size to adjust for this. For more information on adjusting the thread pool size, see the
“Tuning Thread Pools and EJB Pools” section in the “WebLogic JMS Performance
Guide” white paper, at
http://dev2dev.bea.com/resourcelibrary/whitepapers/index.jsp#server,
which discusses tuning JMS client-side thread pools.

In addition, create a topic subscriber, as described in “Create TopicPublishers and
TopicSubscribers” on page 4-10.

For example, the following code illustrates how to create a topic subscriber:

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateMulticast.html
http://dev2dev.bea.com/products/wlserver/whitepapers/WL_JMS_Perform_GD.jsp
http://dev2dev.bea.com/products/wlserver/whitepapers/WL_JMS_Perform_GD.jsp

Using Mu l t i cas t ing wi th WebLogic Se rver

7-4 Programming WebLogic JMS

tsubscriber = tsession.createSubscriber(myTopic);

Note: The createSubscriber() method fails if the specified destination is not configured to
support multicasting.

Step 2: Set Up the Message Listener
Multicast topic subscribers can only receive messages asynchronously. If you attempt to receive
synchronous messages on a multicast session, a JMSException is thrown.

Set up the message listener for the topic subscriber, as described in “Receiving Messages
Asynchronously” on page 4-28.

For example, the following code illustrates how to establish a message listener:

tsubscriber.setMessageListener(this);

When receiving messages, WebLogic JMS tracks the order in which messages are sent by the
destinations. If a multicast subscriber’s message listener receives the messages out of sequence,
resulting in one or more messages being skipped, a SequenceGapException will be delivered
to the ExceptionListener for the session(s) present. If a skipped message is subsequently
delivered, it will be discarded. For example, in the following figure, the subscriber is receiving
messages from two destinations simultaneously.

Figure 7-2 Multicasting Sequence Gap

Upon receiving the “4” message from Destination 1, a SequenceGapException is thrown to
notify the application that a message was received out of sequence. If subsequently received, the
“3” message will be discarded.

Note: The larger the messages being exchanged, the greater the risk of encountering a
SequenceGapException.

Conf igur ing Mul t i cast ing fo r WebLog ic Se rve r

Programming WebLogic JMS 7-5

Dynamically Configuring Multicasting Configuration
Attributes
During configuration, for each connection factory the system administrator configures the
following information to support multicasting:

Messages maximum specifying the maximum number of outstanding messages that can
exist on a multicast session.

Overrun policy specifying whether recent or older messages are discarded in the event the
messages maximum is reached.

If the messages maximum is reached, a DataOverrunException is thrown and messages are
automatically discarded based on the overrun policy. Alternatively, you can set the messages
maximum and overrun policy using the Session set methods.

The following table lists the Session set and get methods for each dynamically configurable
attribute.

Note: The values set using the set methods take precedence over the configured values.

For more information about these Session class methods, see the
weblogic.jms.extensions.WLSession Javadoc. For more information on these multicast
configuration attributes, see “Configure topic multicast parameters” in the Administration
Console Online Help.

Example: Multicast TTL
Note: The following example is a very simplified illustration of how the Multicast TTL

(time-to-live) destination configuration attribute impacts the delivery of messages across

Table 7-1 Message Producer Set and Get Methods

Attribute Set Method Get Method

Messages
Maximum

public void setMessagesMaximum(
 int messagesMaximum
) throws JMSException

public int getMessagesMaximum(
) throws JMSException

Overrun Policy public void setOverrunPolicy (
 int overrunPolicy
) throws JMSException

public int getOverrunPolicy(
) throws JMSException

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateMulticast.html

Using Mu l t i cas t ing wi th WebLogic Se rver

7-6 Programming WebLogic JMS

routers. It is strongly advised that you seek the assistance of your network administrator
when configuring the multicast TTL attribute to ensure that the appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

The following example illustrates how the Multicast TTL destination configuration attribute
impacts the delivery of messages across routers.

For more information, see “Configure topic multicast parameters” in the Administration Console
Online Help.

Consider the following network diagram.

Figure 7-3 Multicast TTL Example

In the figure, the network consists of three subnets: Subnet A containing the multicast publisher,
and Subnets B and C each containing one multicast subscriber.

If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse any routers
and are delivered on the current subnet only), when the multicast publisher on Subnet A publishes
a message, the message will not be delivered to any of the multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one router), when
the multicast publisher on Subnet A publishes a message, the multicast subscriber on Subnet B
will receive the message.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateMulticast.html

Conf igur ing Mul t i cast ing fo r WebLog ic Se rve r

Programming WebLogic JMS 7-7

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can traverse two
routers), when the multicast publisher on Subnet A publishes a message, the multicast subscribers
on Subnets B and C will receive the message.

Using Mu l t i cas t ing wi th WebLogic Se rver

7-8 Programming WebLogic JMS

Programming WebLogic JMS 8-1

C H A P T E R 8

Using Distributed Destinations

The following sections describe the concepts and functionality of distributed destinations
necessary to design higher availability applications:

“What is a Distributed Destination?” on page 8-1

“Why Use a Distributed Destination” on page 8-2

“Creating a Distributed Destination” on page 8-2

“Types of Distributed Destinations” on page 8-2

“Using Distributed Destinations” on page 8-3

“Using Message-Driven Beans with Distributed Destinations” on page 8-10

“Common Use Cases for Distributed Destinations” on page 8-11

What is a Distributed Destination?
A distributed destination is a set of destinations (queues or topics) that are accessible as a single,
logical destination to a client. A distributed destination has the following characteristics:

It is referenced by its own JNDI name.

Members of the set are usually distributed across multiple servers within a cluster, with
each destination member belonging to a separate JMS server.

http://e-docs.bea.com/wls/docs92/jms/fund.html#destination

Using D is t r ibuted Des t inat ions

8-2 Programming WebLogic JMS

Why Use a Distributed Destination
Applications that use distributed destinations are more highly available than applications that use
simple destinations because WebLogic JMS provides load balancing and failover for member
destinations of a distributed destination within a cluster. Once properly configured, your
producers and consumers are able to send and receive messages through the distributed
destination. WebLogic JMS then balances the messaging load across all available members of the
distributed destination. When one member becomes unavailable due a server failure, traffic is
then redirected toward other available destination members in the set. For more information on
how destination members are load balanced, see “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

Creating a Distributed Destination
Distributed destinations are created by the system administrator using the Administration
Console. For more information, see “Configuring Distributed Destinations” in Configuring and
Managing WebLogic JMS.

Types of Distributed Destinations
WebLogic Server supports two types of distributed destinations:

“Uniform Distributed Destinations” on page 8-2

“Weighted Distributed Destinations” on page 8-3

Uniform Distributed Destinations
In a uniform distributed destination (UDD), each of the member destinations has a consistent
configuration of all distributed destination parameters, particularly in regards to weighting,
security, persistence, paging, and quotas.

BEA recommends using UDDs because you no longer need to create or designate destination
members, but instead rely on WebLogic Server to uniformly create the necessary members on the
JMS servers to which a UDD is targeted. This feature of UDDs provides dynamic updating of a
UDD when a new member is added or a member is removed.

For example, if UDD is targeted to a cluster, there is a UDD member on every JMS server in the
cluster. If a new JMS server is added, a new UDD member is dynamically added to the UDD.
Likewise, if a JMS server is removed, the corresponding UDD member is removed from the

http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config

Us ing D is t r ibuted Des t inat i ons

Programming WebLogic JMS 8-3

UDD. This allows UDDs to provide higher availability by eliminating bottlenecks caused by
configuration errors. For more information, see “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

Weighted Distributed Destinations
In a weighted distributed destination, the member destinations do not have a consistent
configuration of all distributed destination parameters, particularly in regards to weighting,
security, persistence, paging, and quotas.

BEA recommends converting weighted distributed destinations to UDDs because of the
administrative inflexibility when creating members that are intended to carry extra message load
or have extra capacity (more weight). Lack of a consistent member configuration can lead to
unforeseen administrative and application problems because the weighted distributed destination
can not be deployed consistently across a cluster.

For more information, see “Configuring Distributed Destinations” in Configuring and Managing
WebLogic JMS.

Using Distributed Destinations
A distributed destination is a set of physical JMS destination members (queues or topics) that is
accessed through a single JNDI name. As such, a distributed destination can be looked up using
JNDI. It implements the javax.jms.Destination interface, and can be used to create
producers, consumers, and browsers.

Because a distributed destination can be served by multiple WebLogic Servers within a cluster,
when creating a reference to a distributed destination by using one of the createQueue() or
createTopic() methods, the name supplied is simply the name of the
JMSDistributedQueueMBean or JMSDistributedTopicMBean preceded by the parent module
name, separated by an exclamation point (!). No JMS server name or separating forward slash (/)
is required.

For example, the following code illustrates how to look up a distributed destination topic:
topic = myTopicSession.createTopic("myModuel!myDistributedTopic");

Note: When calling the createQueue() or createTopic() methods, any string containing a
forward slash (/), is assumed to be the name of a distributed destination member—not
the name of a distributed destination. If no such destination member exists, then the call
will fail with an InvalidDestinationException. See “Deploying Message-Driven
Beans on a Distributed Topic” on page 8-8

http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Using D is t r ibuted Des t inat ions

8-4 Programming WebLogic JMS

Using Distributed Queues
A distributed queue is a set of physical JMS queue members. As such, a distributed queue can be
used to create a QueueSender, QueueReceiver, and a QueueBrowser. The fact that a
distributed queue represents multiple physical queues is mostly transparent to your application.

The queue members can be located anywhere, but must all be served by JMS servers in a single
server cluster. When a message is sent to a distributed queue, it is sent to exactly one of the
physical queues in the set of members for the distributed queue. Once the message arrives at the
queue member, it is available for receipt by consumers of that queue member only. ‘

This section provides information on using distributed queues:

“Queue Forwarding” on page 8-4

“QueueSenders” on page 8-4

“QueueReceivers” on page 8-5

“QueueBrowsers” on page 8-5

Queue Forwarding
Queue members can forward messages to other queue members by configuring the Forward
Delay attribute in the Administration Console, which is disabled by default. This attribute defines
the amount of time, in seconds, that a distributed queue member with messages, but which has no
consumers, will wait before forwarding its messages to other queue members that do have
consumers.

QueueSenders
After creating a queue sender, if the queue supplied at creation time was a distributed queue, then
each time a message is produced using the sender a decision is made as to which queue member
will receive the message. Each message is sent to a single physical queue member.

The message is not replicated in any way. As such, the message is only available from the queue
member where it was sent. If that physical queue becomes unavailable before a given message is
received, then the message is unavailable until that queue member comes back online.

It is not enough to send a message to a distributed queue and expect the message to be received
by a queue receiver of that distributed queue. Since the message is sent to only one physical queue
member, there must be a queue receiver receiving or listening on that queue member.

Us ing D is t r ibuted Des t inat i ons

Programming WebLogic JMS 8-5

Note: For information on the load-balancing heuristics for distributed queues with zero
consumers, see “Configuring Distributed Destinations” in Configuring and Managing
WebLogic JMS.

QueueReceivers
When creating a queue receiver, if the supplied queue is a distributed queue, then a single
physical queue member is chosen for the receiver at creation time. The created QueueReceiver
is pinned to that queue member until the queue receiver loses its access to the queue member. At
that point, the consumer will receive a JMSException, as follows:

If the queue receiver is synchronous, then the exception is returned to the user directly.

If the queue receiver is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and recreate it. If
any other queue members are available within the distributed queue, then the creation will
succeed and the new queue receiver will be pinned to one of those queue members. If no other
queue member is available, then the application won’t be able to recreate the queue receiver and
will have to try again later.

Note: For information on the load-balancing heuristics for distributed queues with zero
consumers, see “Configuring Distributed Destinations” in Configuring and Managing
WebLogic JMS.

QueueBrowsers
When creating a queue browser, if the supplied queue is a distributed queue, then a single
physical queue member is chosen for the browser at creation time. The created queue browser is
pinned to that queue member until the receiver loses its access to the queue member. At that point,
any calls to the queue browser will receive a JMSException. Any calls to the enumeration will
return a NoSuchElementException.

Note: The queue browser can only browse the queue member that it is pinned to. Even though
a distributed queue was specified at creation time, the queue browser cannot see or
browse messages for the other queue members in the distributed destination.

http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config

Using D is t r ibuted Des t inat ions

8-6 Programming WebLogic JMS

Using Distributed Topics
A distributed topic is a set of physical JMS topic members. As such, a distributed topic can be
used to create a TopicPublisher and TopicSubscriber. The fact that a distributed topic
represents multiple physical topics is mostly transparent to the application.

Note: Durable subscribers (DurableTopicSubscriber) cannot be created for distributed
topics. However, you can still create a durable subscription on distributed topic member
and the other topic members will forward the messages to the topic member that has the
durable subscription.

The topic members can be located anywhere but must all be served either by a single WebLogic
Server or any number of servers in a cluster. When a message is sent to a distributed topic, it is
sent to all of the topic members in the distributed topic set. This allows all subscribers to the
distributed topic to receive messages published for the distributed topic.

A message published directly to a topic member of a distributed destination (that is, the publisher
did not specify the distributed destination) is also forwarded to all the members of that distributed
topic. This includes subscribers that originally subscribed to the distributed topic, and which
happened to be assigned to that particular topic member. In other words, publishing a message to
a specific distributed topic member automatically forwards it to all the other distributed topic
members, just as publishing a message to a distributed topic automatically forwards it to all of its
distributed topic members. For more information about looking up specific distributed
destination members, see “Accessing Distributed Destination Members” on page 8-8.

This section provides information on using distributed queues:

“TopicPublishers” on page 8-6

“TopicSubscribers” on page 8-7

“Deploying Message-Driven Beans on a Distributed Topic” on page 8-8

TopicPublishers
When creating a topic publisher, if the supplied destination is a distributed destination, then any
messages sent to that distributed destination are sent to all available topic members for that
distributed topic, as follows:

If one or more of the distributed topic members is not reachable, and the message being
sent is non-persistent, then the message is sent only to the available topic members.

If one or more of the distributed topic members is not reachable, and the message being
sent is persistent, then the message is stored and forwarded to the other topic members

Us ing D is t r ibuted Des t inat i ons

Programming WebLogic JMS 8-7

when they become reachable. However, the message can only be persistently stored if the
topic member has a JMS store configured.

Note: Every effort is made to first forward the message to distributed members that utilize
a persistent store. However, if none of the distributed members utilize a store, then
the message is still sent to one of the members according to the selected
load-balancing algorithm, as described in “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

If all of the distributed topic members are unreachable (regardless of whether the message
is persistent or non-persistent), then the publisher receives a JMSException when it tries
to send a message.

TopicSubscribers
When creating a topic subscriber, if the supplied topic is a distributed topic, then the topic
subscriber receives messages published to that distributed topic. If one or more of the topic
members for the distributed topic are not reachable by a topic subscriber, then depending on
whether the messages are persistent or non-persistent the following occurs:

Any persistent messages published to one or more unreachable distributed topic members
are eventually received by topic subscribers of those topic members once they become
reachable. However, the messages can only be persistently stored if the topic member has a
JMS store configured.

Any non-persistent messages published to those unreachable distributed topic members
will not be received by that topic subscriber.

Note: If a JMS store is configured for a JMS server that is hosting a distributed topic
member, then all the Distributed Topic System Subscribers associated with that
member destination are treated as durable subscriptions, even when a topic member
does not have a JMS store explicitly configured. As such, the saving of all the
messages sent to these distributed topic subscribers in memory can result in
unexpected memory and disk consumption. Therefore, a recommended best design
practice when deploying distributed destination is to consistently configure all
member destinations: either with a JMS store for durable messages, or without a JMS
store for non-durable messages. For example, if you want all of your distributed topic
subscribers to be non-durable, but some member destinations implicitly have a JMS
store configured because their associated JMS server uses a JMS store, then you need
to explicitly set the StoreEnabled attribute to False for each member destination to
override the JMS server setting.

http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config

Using D is t r ibuted Des t inat ions

8-8 Programming WebLogic JMS

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic member becomes
unavailable, then the topic subscriber will receive a JMSException, as follows:

If the topic subscriber is synchronous, then the exception is returned to the user directly.

If the topic subscriber is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

Upon receiving such an exception, an application can close its topic subscriber and recreate it. If
any other topic member is available within the distributed topic, then the creation should be
successful and the new topic subscriber will be pinned to one of those topic members. If no other
topic member is available, then the application will not be able to recreate the topic subscriber
and will have to try again later.

Deploying Message-Driven Beans on a Distributed Topic
When an MDB is deployed on a distributed topic and is targeted to a WebLogic Server instance
in a cluster that is hosting two members of the distributed topic on a JMS server, the MDB gets
deployed on both the members of the distributed topic. This occurs because MDBs are pinned to
a distributed topic member’s destination name.

Therefore, you will receive [number of messages sent] * [number of distributed topic members]
more messages per MDB, depending on how may distributed topic members are deployed on a
WebLogic Server instance. For example, if a JMS server contains two distributed topic members,
then two MDBs are deployed, one for each member, so you will receive twice as many messages.

Accessing Distributed Destination Members
The following sections provide information on how to directly access a member a of a distributed
destination.

Note: Applications defeat load balancing by directly accessing the individual physical
destinations. For more information, see “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

Accessing Uniform Destination Members
In order to access a uniform destination member within a uniform distributed destination, you
must look up the JNDI name or the member name using the
weblogic.jms.extensions.JMSModuleHelper class uddMakeName and
uddMemberJNDIName APIs. You can then use the JNDI name or supply the module name

http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/JMSModuleHelper.html

Us ing D is t r ibuted Des t inat i ons

Programming WebLogic JMS 8-9

followed by an exclamation point (!), the JMS server name followed by a forward slash (/), and
the member name.

For example, the following code illustrates how to look up a particular member of a uniform
distributed queue (myQueue), on a JMS server (myServer) in module (myModule):
queue = myQueueSession.createQueue("myModule!myServer/myQueue");

Note: When calling the createQueue() or createTopic() methods, any string containing a
forward slash (/), is assumed to be the name of a distributed destination member—not a
distributed destination. If no such destination member exists, then the call will fail with
an InvalidDestinationException.

uddMakeName
This API returns the member name of a uniform distributed destination, given the name of the
uniform distributed destination and the JMS server upon which the member is deployed or to be
deployed.

public static String uddMemberName(String jmsServerName, String name) {

 return(uddMakeName(jmsServerName, name));

 }

where:

jmsServerName is the configured name of a JMS Server.

name is the configured name of a uniform distributed destination.

Returns String[] array of JMS server names.

uddMemberJNDIName
This API returns the JNDI name of a uniform distributed destination member, given the JNDI
name of the uniform distributed destination and the JMS server upon which the member is
deployed or to be deployed.

public static String uddMemberJNDIName(String jmsServerName, String name) {

 return(uddMakeName(jmsServerName, name));

 }

where:

jmsServerName is the configured name of a JMS Server.

Using D is t r ibuted Des t inat ions

8-10 Programming WebLogic JMS

name is the configured name of a uniform distributed destination.

 Returns String[] array of JMS server names.

Accessing Weighted Destination Members
In order to access a weighted destination member within a distributed destination, you must look
up the destination member using the configured JNDI name, or supply the module name followed
by an exclamation point (!), the JMS server name followed by a forward slash (/), and the
JMSQueueMBean or JMSTopicMBean configuration MBean name.

For example, the following code illustrates how to look up a particular member of a weighted
distributed queue (myQueue), on a JMS server (myServer) in module (myModule):
queue = myQueueSession.createQueue("myModule!myServer/myQueue");

Note: When calling the createQueue() or createTopic() methods, any string containing a
forward slash (/), is assumed to be the name of a distributed destination member—not a
distributed destination. If no such destination member exists, then the call will fail with
an InvalidDestinationException.

Distributed Destination Failover
Note: If the distributed queue member on which a queue producer is created should fail, yet the

WebLogic Server instance where the producer’s JMS connection resides is still running,
the producer remains alive and WebLogic JMS will fail it over to another distributed
queue member, irrespective of whether the Load Balancing option is enabled. For
example, a WebLogic cluster contains WLSServer1, WLSServer2, and WLSServer3 and
you are connected to WLServer2. If server WLSServer 2 fails, WebLogic JMS fail the
producer over to one of the remaining cluster members. For more information, see
“Configuring Distributed Destinations” in Configuring and Managing WebLogic JMS.

A simple way to failover a client connected to a failed distributed destination is to write reconnect
logic in the client code to connect to the distributed destination after catching onException.

Using Message-Driven Beans with Distributed
Destinations

A message-driven bean (MDB) acts as a JMS message listener, which is similar to an event
listener except that it receives messages instead of events. For more information on MDBs, see:

MDBs and Messaging Models in Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs92/ejb/message_beans.html#messaging_models

Common Use Cases fo r D is t r ibuted Des t inat i ons

Programming WebLogic JMS 8-11

MDB Deployment Options in Programming WebLogic Enterprise JavaBeans.

Common Use Cases for Distributed Destinations
The following sections provide common use case scenarios when using distributed destinations:

“Maximizing Production” on page 8-11

“Maximizing Availability” on page 8-12

“Stuck Messages” on page 8-13

Maximizing Production
To maximize message production, Bea recommends that each member of a distributed
destination be associated with a producer and a consumer. The following diagram demonstrates
how to efficiently provide maximum message production and high availability using a UDD
without using load balancing:

Figure 8-1 Paired Producers and Consumers

Producer 1 Producer 2
UDD1

Consumer 1 Consumer 2

D1 D2

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html#mdb_deployment_options

Using D is t r ibuted Des t inat ions

8-12 Programming WebLogic JMS

In this situation, UDD1 is a uniform distributed destination composed of two physical members:
D1 and D2. Each physical destination has a producer/consumer pair and the effective path for a
message follows the solid line from the producer through the destination member to the
consumer. If you are using ordering, you should have a producer for each expected
Unit-of-Order. See Using Unit-of-Order with Distributed Destinations in Programming
WebLogic JMS.

Maximizing Availability
This section provides information on how to maximize message availability.

Using Queues
Ideally, its best to pair a producer with a consumer but it is not always practical. The rate that
messages are consumed is the limiting factor that determines the message throughput of your
application. You can increase the availability of consumers by using load balancing between
member destinations. In this situation, consumers are not paired with a producer as the UDD load
balances an incoming message to the next available consumer using the assigned load balancing
algorithm.

Note: Some combinations of Unit-of-Order features can result in the starvation of competing
Unit-of-Order message streams, including the under utilization of resources when the
number of consumers exceed the number of in-flight messages with different
Unit-of-Order names. You will need to test your applications under maximum loads to
optimize your system's performance and eliminate conditions that under utilize
resources.

Using Topics
When using a distributed topic, every member destination will forward its messages to every
other member of the distributed topic.

http://e-docs.bea.com/wls/docs92/jms/uoo.html

Common Use Cases fo r D is t r ibuted Des t inat i ons

Programming WebLogic JMS 8-13

Figure 8-2 Using Distributed Topics

In this situation, UDD1 is a uniform distributed destination composed of two physical members:
D1 and D2. Each physical destination has a producer/consumer pair. Each consumer receives
messages sent by Producer 1 and Producer 2.

Stuck Messages
In this situation, a producer is sending messages to one member of a UDD but there is no
consumer available to get the message. This typically happens as a producer sends a message to
one of the destinations (D1) and a consumer is listening for messages on another destination (D2).

Producer 1 Producer 2
UDD1

Consumer 1 Consumer 2

D1 D2

Using D is t r ibuted Des t inat ions

8-14 Programming WebLogic JMS

Figure 8-3 Stuck Messages

UDD1 is a uniform distributed destination composed of two physical members: D1 and D2. D1
has a producer and D2 has a consumer. Avoid this configuration by using producer/consumer
pairs or by configuring forwarding on the destination.

Producer 1
UDD1

Consumer 2

D1 D2

Programming WebLogic JMS 9-1

C H A P T E R 9

Enhanced J2EE Support for Using
WebLogic JMS With EJBs and Servlets

Usability features that are generally hidden behind the J2EE standard have been enhanced to
make it easier to access EJB and servlet containers with WebLogic JMS or third-party JMS
providers. In fact, implementing this “JMS wrapper” support, as described in this section, is the
best practice method of sending a WebLogic JMS message from inside an EJB or servlet.

“Enabling WebLogic JMS Wrappers” on page 9-1

“What’s Happening Under the JMS Wrapper Covers” on page 9-5

“Improving Performance Through Pooling” on page 9-8

“Examples of JMS Wrapper Functions” on page 9-10

“Simplified Access to Remote or Foreign JMS Providers” on page 9-15

“Simplified Access to Remote or Foreign JMS Providers” on page 9-15 briefly describes the
Administration Console support for foreign JMS providers. This feature makes it possible to
easily map foreign JMS providers — including remote instances of WebLogic Server in another
cluster or domain — so that they appear in the local JNDI tree as a local JMS object.

Enabling WebLogic JMS Wrappers
WebLogic Server uses JMS wrappers that make it easier to use WebLogic JMS inside a J2EE
component, such as an EJB or a servlet, while also providing a number of enhanced usability and
performance features:

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-2 Programming WebLogic JMS

Automatic pooling of JMS connection and session objects (and some pooling of message
producer objects as well).

Automatic transaction enlistment for WebLogic JMS implementations and for third-party
JMS providers that support two-phase commit transactions (XA protocol).

Testing of the JMS connection, as well as reestablishment after a failure.

Security credentials that are managed by the EJB or servlet container.

“What’s Happening Under the JMS Wrapper Covers” on page 9-5 describes how WebLogic
Server implements these features behind the scenes.

Declaring JMS Objects as Resources In the EJB or Servlet
Deployment Descriptors
You enable these enhanced J2EE features by declaring a JMS connection factory as a
resource-ref in the EJB or servlet deployment descriptors, as described in “Declaring a
Wrapped JMS Connection Factory” on page 9-2. For example, when a connection factory is
declared as a resource-ref, a JMS application can look it up from JNDI using the
java:comp/env/ subtree that is created for each EJB or servlet. It is important to note that the
features listed above are only enabled when using a JMS resource inside the deployment
descriptors. The EJB and servlet programmers still have direct access to the JMS provider by
performing a direct JNDI lookup of the connection factory or destination.

For more information about packaging EJBs, see “Implementing Enterprise JavaBeans” in
Programming WebLogic Enterprise JavaBeans. For more information about programming
servlets, see “Creating and Configuring Servlets” in Programming WebLogic HTTP Servlets.

Declaring a Wrapped JMS Connection Factory
You can declare a JMS connection factory as part of an EJB or servlet by defining a
resource-ref element in the ejb-jar.xml or web.xml file, respectively. This process creates
a “wrapped” JMS connection factory that can benefit from the more advanced session pooling,
automatic transaction enlistment, connection monitoring, and container-managed security
features described in “Improving Performance Through Pooling” on page 9-8.

Here is an example of such a connection factory element:

<resource-ref>

 <res-ref-name>jms/QCF</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

http://e-docs.bea.com/wls/docs92/ejb/implementing.html
http://e-docs.bea.com/wls/docs92/webapp/configureservlet.html

Enabl ing WebLogic JMS Wrappers

Programming WebLogic JMS 9-3

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

This element declares that a JMS QueueConnectionFactory object will be bound into JNDI, at
the location:

java:comp/env/QCF

This JNDI name is only valid inside the context of the EJB or servlet where the resource-ref
is declared, which is what the java:comp/env JNDI context signifies.

In addition to this element, there must be a matching resource-description element in the
weblogic-ejb-jar.xml (for EJBs) or weblogic.xml (for servlets) file that tells the J2EE
container which JMS connection factory to put in that location. Here is an example:

<resource-description>

 <res-ref-name>jms/QCF</res-ref-name>

 <jndi-name>weblogic.jms.ConnectionFactory</jndi-name>

</resource-description>

The connection factory specified here must already exist in the global JNDI tree. (This example
uses one of the default JMS connection factories that is automatically created when the built-in
WebLogic JMS server is used). To use another WebLogic JMS connection factory from the same
cluster, simply include that connection factory’s JNDI name inside the jndi-name element. To
use a connection factory from another vendor, or from another WebLogic Server cluster, create
a Foreign JMS Server.

If the JNDI name specified in the resource-description element is incorrect, then the
application is still deployed. However, you will receive an error when you try to use the
connection factory.

Declaring JMS Destinations
You can also bind a JMS queue or topic destination into the java:comp/env/jms JNDI tree by
declaring it as a resource-env-ref element in the ejb-jar.xml or web.xml deployment
descriptors. The transaction enlistment, pooling, connection monitoring features take place in the
connection factory, not in the destinations. However, this feature is useful for consistency, and to
make an application less dependent on a particular configuration of WebLogic Server, since
destinations can easily be modified by simply changing the corresponding resource-env-ref
description, without having to recompile the source code.

Here is an example of such a queue destination element:

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-4 Programming WebLogic JMS

<resource-env-ref>

 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

This element declares that a JMS Queue destination object will be bound into JNDI, at the
location:

java:comp/env/TESTQUEUE

As with a referenced connection factory, this JNDI name is only valid inside the context of the
EJB or servlet where the resource-ref is declared.

You must also define a matching resource-env-description element in the
weblogic-ejb-jar.xml or weblogic.xml file. This provides a layer of indirection which
allows you to easily modify referenced destinations just by changing the corresponding
resource-env-ref deployment descriptors.

<resource-env-description>

 <res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>

 <jndi-name>jmstest.destinations.TESTQUEUE</jndi-name>

</resource-env-description>

The queue or topic destination specified here must already exist in the global JNDI tree. Again,
if the destination does not exist, the application is deployed, but an exception is thrown when you
try to use the destination.

Sending a JMS Message In a J2EE Container
After you declare the JMS connection factory and destination resources in the deployment
descriptors so that they are mapped to the java:comp/env JNDI tree, you can use them to send
and/or receive JMS messages inside an EJB or a servlet.

For example, the following code fragment sends a message:

InitialContext ic = new InitialContext();

QueueConnectionFactory qcf =

 (QueueConnectionFactory)ic.lookup("java:comp/env/jms/QCF");

Queue destQueue =

 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");

ic.close();

QueueConnection connection = qcf.createQueueConnection();

try {

What ’ s Happening Under the JMS Wrappe r Covers

Programming WebLogic JMS 9-5

 QueueSession session = connection.createQueueSession(0, false);

 QueueSender sender = session.createSender(destQueue);

 TextMessage msg = session.createTextMessage("This is a test");

 sender.send(msg);

} finally {

 connection.close();

}

This is standard code that complies with the J2EE specification and should run on any EJB or
servlet product that properly supports J2EE — the difference is that it runs more efficiently on
WebLogic Server, because under the covers various objects are pooled, as described in “Pooled
JMS Connection Objects” on page 9-8.

Note that this code fragment uses a try...finally block to guarantee that the close() method
on the JMS Connection object is executed even if one of the statements inside the block throws
an exception. If no connection pooling were being done, then this block would be necessary in
order to ensure that the connection is closed, and to prevent server resources from being wasted.
But since WebLogic Server pools some of the objects that are created by this code fragment, it is
even more important that close() be called; otherwise, the EJB or servlet container will not
know when to return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are used in this code fragment.
Instead, the container uses them internally if the JMS code is used inside a transaction context.
But whether XA is used internally, the user-written code is the same, and does not use any JMS
XA classes. This is what is specified by J2EE. Writing EJB code in this way enables you to run
EJBs in an environment where transactions are present or in a non-transactional environment, just
by changing the deployment descriptors.

Caution: When using a wrapped JMS connection factory, which is obtained by using the
resource-ref feature and looked up by using the java:comp/env/jms JNDI tree
context, then the EJB must not use the transactional XA interfaces.

What’s Happening Under the JMS Wrapper Covers
This section explains what is actually taking place under the covers when WebLogic Server
creates a set of wrappers around the JMS objects. For example, the code fragment in “Sending a
JMS Message In a J2EE Container” on page 9-4, shows an instance of a WebLogic-specific
wrapper class being returned rather than the actual JMS connection factory because the
connection factory was looked up from the java:comp/env JNDI tree. This wrapper object

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-6 Programming WebLogic JMS

intercepts certain calls to the JMS provider and inserts the correct J2EE behavior, as described in
the following sections.

Automatically Enlisting Transactions
This feature works for either WebLogic JMS implementations or for third-party JMS providers
that support two-phase commit transactions (XA protocol). If a wrapped JMS connection sends
or receives a message inside a transaction context, the JMS session being used to send or receive
the message is automatically enlisted in the transaction through the XA capabilities of the JMS
provider. This is the case whether the transaction was started implicitly because the JMS code
was invoked inside an EJB with container-managed transactions enabled, or whether the
transaction was started manually using the UserTransaction interface in a servlet or an EJB
that supports bean-managed transactions.

However, if an EJB or servlet attempts to send or receive a message inside a transaction context
and the JMS provider does not support XA, the send() or receive() call throws the following
exception:
[J2EE:160055] Unable to use a wrapped JMS session in the transaction because
two-phase commit is not available.

Therefore, if you are using a JMS provider that doesn’t support XA to send or receive a message
inside a transaction, either declare the EJB with a transaction mode of NotSupported or suspend
the transaction using one of the JTA APIs.

Container-Managed Security
WebLogic JMS uses the security credentials that are present on the thread when the EJB or servlet
container is invoked. For foreign JMS providers, however, when you declare a JMS connection
factory via a resource-ref element in the weblogic-ejb-jar.xml or web.xml file, there is
an optional sub-element called res-auth. This element may have one of two settings:

Container — When you set the res-auth element to Container, security to the JMS provider
is managed by the J2EE container. In this case, if the JMS connection factory was mapped into
the JNDI tree using a Foreign JMS Connection Factory configuration MBean, then the user name
and password from that MBean is used (see “Simplified Access to Remote or Foreign JMS
Providers” on page 9-15). Otherwise, WebLogic Server connects to the provider with no user
name or password specified. In this mode, it is an error to pass a user name and password to the
createConnection() method of the JMS connection factory.

Application — When you set the res-auth element to Application, any user name or
password on the MBean is ignored. Instead, the application code must specify a user name and

What ’ s Happening Under the JMS Wrappe r Covers

Programming WebLogic JMS 9-7

password to the createConnection() method of the JMS connection factory, or use the version
of createConnection() with no user name or password if none are required.

Connection Testing
The JMS wrapper classes monitor each connection that is established to the JMS provider. They
do this in two ways:

Registering a JMS ExceptionListener object on the connection.

Testing the connection every two minutes by sending a message to a temporary queue or
topic and then receiving it again.

J2EE Compliance
The J2EE specification states that you should not be allowed to make certain JMS API calls inside
a J2EE application. The JMS wrappers enforce these restrictions by throwing the following
exceptions when they are violated:

On the connection object, the methods createConnectionConsumer(),
createDurableConnectionConsumer(), setClientID(), setExceptionListener(),
and stop() should not be called.

On the session object, the methods getMessageListener() and
setMessageListener() should not be called.

On the consumer object (a QueueReceiver or TopicSubscriber object), the methods
getMessageListener() and setMessageListener() should not be called.

Furthermore, the createSession() method, and the associated createQueueSession() and
createTopicSession() methods, are handled differently. The createSession() method
takes two parameters: an “acknowledgement” mode and a “transacted” flag. When used inside an
EJB, these two parameters are ignored. If a transaction is present, then the JMS session is enlisted
in the transaction as described in “Automatically Enlisting Transactions” on page 9-6; otherwise,
it is not. By default, the acknowledgement mode is set to “auto acknowledge”. This behavior is
expected by the J2EE specification.

Note: This may make it more difficult to receive messages from inside an EJB, but the
recommended way to receive messages from inside an EJB is to use a MDB, as described
in “Designing and Developing Message-Driven EJBs” in Programming WebLogic
Enterprise JavaBeans.

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-8 Programming WebLogic JMS

Inside a servlet, however, the parameters to createQueueSession() and
createTopicSession() are handled normally, and users can make use of all the various
message acknowledgement modes.

Pooled JMS Connection Objects
The JMS wrappers pool various session objects in order to make code like the example provided
in “Sending a JMS Message In a J2EE Container” on page 9-4 more efficient. A pooled JMS
connection is a session pool used by EJBs and servlets that use a resource-ref element in their
deployment descriptor to define their JMS connection factories, as discussed in “Declaring a
Wrapped JMS Connection Factory” on page 9-2.

Monitoring Pooled Connections
You can use the Administration Console to monitor pooled connections. For more information,
see “JMS Servers: Monitoring: Active Pooled Connections” in the Administration Console
Online Help.

Improving Performance Through Pooling
The automatic pooling of connections and other objects by the JMS wrappers means that it is
efficient to write code as shown in “Sending a JMS Message In a J2EE Container” on page 9-4.
Although in this example the Connection Factory, Connection, and Session objects are created
every time a message is sent, in reality these three classes work together so that when they are
used as shown, they do little more than retrieve a Session object from the pool.

Speeding Up JNDI Lookups by Pooling Session Objects
The JNDI lookups of the Connection Factory and Destination objects can be expensive in terms
of performance. This is particularly true if the Destination object points to a Foreign JMS
Destination MBean, and therefore, is a lookup on a non-local JNDI provider. Because the
Connection Factory and Destination objects are thread-safe, they can be looked up once inside an
EJB or servlet at creation time, which saves the time required to perform the lookup each time.

Inside a servlet, these lookups can be performed inside the init() method. The Connection
Factory and Destination objects may then be assigned to an instance variable and reused
whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ejbCreate() method and assigned to
an instance variable. For a session bean, each instance of the bean will then have its own copy.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsservermonitorpooledconnectionstitle.html

Improv ing Per fo rmance Th rough Poo l ing

Programming WebLogic JMS 9-9

Since stateless session beans are pooled, this method is also very efficient (and is perfectly
consistent with the J2EE specifications), because the number of a times that lookups occur is
drastically reduced by pooling the JMS connection objects. (Caching these objects in a static
member of the EJB class may work, but it is discouraged by the J2EE specification.)

However, if these objects are cached inside the ejbCreate() or init() method, then the EJB
or servlet must have some way to recreate them if there has been a failure. This is necessary
because some JMS providers, like WebLogic JMS, may invalidate a Destination object after a
server failure. So, if the EJB runs on Server A, and JMS runs on Server B, then the EJB on Server
A will have to perform the JNDI lookup of the objects from Server B again after that server has
recovered. The example, “PoolTestBean.java” on page 9-13 includes a sample EJB that performs
this caching and relookup process correctly.

Speeding Up Object Creation Through Caching
Once Connection Factory object and/or Destination object pooling has been established, it may
be tempting to cache other objects, such as the Connection, Session, and Producer objects, inside
the ejbCreate() method. This will work, but it is not always the most efficient solution.
Essentially, by doing this you are removing a Session object from the cache and permanently
assigning it to a particular EJB, whereas by using the JMS wrappers as designed, that Session
object can be shared by other EJBs and servlets as well. Furthermore, the wrappers attempt to
reestablish a JMS connection and create new session objects if there is a communication failure
with the JMS provider, but this will not work if you cache the Session object on your own.

Enlisting the Proper Transaction Mode
When a JMS send() or receive() operation is performed inside a transaction, the EJB or
servlet automatically enlists the JMS provider in the transaction. A transaction can be started
automatically inside an EJB or servlet that has container-managed transactions, or it can be
started explicitly using the UserTransaction interface. In either case, the container
automatically enlists the JMS provider. However, if the underlying JMS connection factory used
by the EJB or servlet does not support XA, the container throws an exception.

Performing the transaction enlistment has overhead. Furthermore, if an XA connection factory is
used, but the send() or receive() method is invoked outside a transaction, the container must
still create a JTA transaction to wrap the send() or receive() method in order to ensure that
the operation properly takes place no matter which JMS provider is used. Although this is only a
one-phase commit, it can still slow down the server.

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-10 Programming WebLogic JMS

Therefore, when writing an EJB or servlet that uses a JMS resource in a non-transactional
manner, it is best to use a JMS connection factory that is not configured to support XA.

Examples of JMS Wrapper Functions
The following files make up a simple stateless EJB session bean that uses the WebLogic JMS
wrapper functions to send a transactional message (sendXATransactional) when an EJB is
called. Although this example uses a session bean, the same XML descriptors and bean class
(with very few changes) can be used for a message-driven bean.

ejb-jar.xml
This section describes the EJB components. For the “JMS wrapper” code snippets provided in
this section, note that this section declares the resource-ref and resource-env-ref elements
for the wrapped JMS connection factory (QueueConnectionFactory) and referenced JMS
destination (TESTQUEUE).

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC

 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>PoolTestBean</ejb-name>

 <home>weblogic.jms.pool.test.PoolTestHome</home>

 <remote>weblogic.jms.pool.test.PoolTest</remote>

 <ejb-class>weblogic.jms.pool.test.PoolTestBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <resource-ref>

 <res-ref-name>jms/QCF</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

Examples o f JMS Wrappe r Funct ions

Programming WebLogic JMS 9-11

 <resource-env-ref>

 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

 </resource-env-ref>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 <container-transaction>

 <method>

 <ejb-name>PoolTestBean</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

weblogic-ejb-jar.xml
This section declares matching resource-description queue connection factory and queue
destination elements that tell the J2EE container which JMS connection factory and destination
to put in that location.

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC

 "-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN"

 "http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd">

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>

 <ejb-name>PoolTestBean</ejb-name>

 <stateless-session-descriptor>

 <pool>

 <max-beans-in-free-pool>8</max-beans-in-free-pool>

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-12 Programming WebLogic JMS

 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>

 </pool>

 </stateless-session-descriptor>

 <reference-descriptor>

 <resource-description>

 <res-ref-name>jms/QCF</res-ref-name>

 <jndi-name>weblogic.jms.XAConnectionFactory</jndi-name>

 </resource-description>

 <resource-env-description>

 <res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>

 <jndi-name>TESTQUEUE</jndi-name>

 </resource-env-description>

 </reference-descriptor>

 <jndi-name>PoolTest</jndi-name>

 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

PoolTest.java
This section defines the “remote” interface for the PoolTest bean. It declares one method, called
sendXATransactional.

package weblogic.jms.pool.test;

import java.rmi.*;

import javax.ejb.*;

public interface PoolTest extends EJBObject

{

 public String sendXATransactional(String text)

 throws RemoteException;

}

PoolTestHome.java
This section defines the “home” interface for the PoolTest bean. It is required by the EJB
specification.

package weblogic.jms.pool.test;

Examples o f JMS Wrappe r Funct ions

Programming WebLogic JMS 9-13

import java.rmi.*;

import javax.ejb.*;

public interface PoolTestHome

 extends EJBHome

{

 PoolTest create()

 throws CreateException, RemoteException;

}

PoolTestBean.java
This section defines the actual EJB code. It sends a message whenever the
sendXATransactional method is called.

package weblogic.jms.pool.test;

import java.lang.reflect.*;

import java.rmi.*;

import javax.ejb.*;

import javax.jms.*;

import javax.naming.*;

import javax.transaction.*;

public class PoolTestBean

 extends PoolTestBeanBase

 implements SessionBean

{

 private SessionContext context;

 private QueueConnectionFactory qcf;

 private Queue destination;

 public void ejbActivate()

 {

 }

 public void ejbRemove()

 {

 }

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-14 Programming WebLogic JMS

 public void ejbPassivate()

 {

 }

 public void setSessionContext(SessionContext ctx)

 {

 context = ctx;

 }

 private void lookupJNDIObjects()

 throws NamingException

 {

 InitialContext ic = new InitialContext();

 try {

 qcf =

 (QueueConnectionFactory)ic.lookup

 ("java:comp/env/jms/QCF");

 destination =

 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");

 } finally {

 ic.close();

 }

 }

 public void ejbCreate()

 throws CreateException

 {

 try {

 lookupJNDIObjects();

 } catch (NamingException ne) {

 throw new CreateException(ne.toString());

 }

 }

 public String sendXATransactional(String text)

 throws RemoteException

 {

Simpl i f i ed Access to Remote o r Fo re ign JMS Prov iders

Programming WebLogic JMS 9-15

 String id = "Not sent yet";

 try {

 if ((qcf == null) || (destination == null)) {

 lookupJNDIObjects();

 }

 QueueConnection connection = qcf.createQueueConnection();

 try {

 QueueSession session = connection.createQueueSession

 (false, 0);

 TextMessage message = session.createTextMessage

 (text);

 QueueSender sender = session.createSender(destination);

 sender.send(message);

 id = message.getJMSMessageID();

 } finally {

 connection.close();

 }

 } catch (Exception e) {

 // Invalidate the JNDI objects if there is a failure

 // this is necessary because the destination object

 // may become invalid if the destination server has

 // been shut down

 qcf = null;

 destination = null;

 throw new RemoteException("Failure in EJB: " + e);

 }

 return id;

 }

}

Simplified Access to Remote or Foreign JMS Providers
Another set of foreign JMS provider features makes it possible to create a “symbolic link”
between a JMS connection factory or destination object in an third-party JNDI provider to an
object inside the local WebLogic Server. This feature can also be used to reference remote
instances of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

There are three System Module MBeans for this task:

Enhanced J2EE Suppor t f o r Us ing WebLog ic JMS Wi th EJBs and Serv le ts

9-16 Programming WebLogic JMS

Foreign Server — Contains information about the remote JNDI provider, including its
initial context factory, URL, and additional parameters. It is the parent of the Foreign
Connection Factory and Foreign Destination MBeans. It can be targeted to an independent
WebLogic Server or to a cluster. For more information see, “ForeignServerBean” in the
WebLogic Server MBean Reference.

Foreign Connection Factory — represents a foreign connection factory. It contains the
name of the connection factory in the remote JNDI provider, the name to map it to in the
server’s JNDI tree, and an optional user name and password. The user name and password
are only used when a Foreign Connection Factory is used inside a resource-reference
in an EJB or a servlet, with the “Container” mode of authentication. It creates
non-replicated JNDI objects on each WebLogic Server instance to which the parent
Foreign Connection Factory MBean is targeted. (To create the JNDI object on every node
in a cluster, target the parent MBean to the cluster.). For more information see,
“ForeignConnectionFactoryBean” in the WebLogic Server MBean Reference.

Foreign Destination — represents a foreign destination. It contains the name to look up on
the foreign JNDI provider, and the name to map it to on the local server.

For information on how to configure foreign resources using the Administration Console, see
Configuring JMS System Resources in Configuring and Managing WebLogic JMS.

Once deployed, these foreign System Module MBeans work by creating objects in the local
server’s JNDI tree, which then perform the lookup of the referenced remote JMS objects
whenever the foreign System Module MBeans are looked up. This means that the local server and
the remote JNDI directory are never out of sync. However, from a performance perspective, it
means that a JNDI lookup of one of these MBeans can potentially be expensive. The sections
under “Improving Performance Through Pooling” on page 9-8 describes some ways to improve
the performance of these remote lookups.

http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/ForeignServerBean.html
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/ForeignConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#accessing_foreign_providers

Programming WebLogic JMS 10-1

C H A P T E R 10

Using Message Unit-of-Order

The following sections describe how to use Message Unit-of-Order to provide strict message
ordering when using WebLogic JMS:

“What Is Message Unit-Of-Order?” on page 10-1

“Understanding Message Processing with Unit-of-Order” on page 10-1

“Message Unit-of-Order Case Study” on page 10-4

“How to Create a Unit-of-Order” on page 10-8

“Message Unit-of-Order Advanced Topics” on page 10-10

“Limitations of Message Unit-of-Order” on page 10-15

What Is Message Unit-Of-Order?
Message Unit-of-Order is a WebLogic Server value-added feature that enables a stand-alone
message producer, or a group of producers acting as one, to group messages into a single unit with
respect to the processing order. This single unit is called a Unit-of-Order and requires that all
messages from that unit be processed sequentially in the order they were created.

Understanding Message Processing with Unit-of-Order
The following sections compare message processing as described by the JMS specification with
message processing enhanced by using WebLogic Server’s Message Unit-of-Order feature.

Using Message Un i t -o f -Order

10-2 Programming WebLogic JMS

“Message Processing According to the JMS Specification” on page 10-2

“Message Processing with Unit-of-Order” on page 10-2

“Message Delivery with Unit-of-Order” on page 10-3

Message Processing According to the JMS Specification
While the Java Message Service Specification provides an ordered message delivery, it does so
in a very strict sense. It defines order between a single instance of a producer and a single instance
of a consumer, but does not take into account the following common situations:

Many consumers on one queue. See “Using Distributed Destinations” on page 8-1.

Multiple producers within a single application acting as a single producer. See “Using
Distributed Destinations” on page 8-1.

Message recoveries or transaction rollbacks where other messages from the same producer
can be delivered to another consumer for processing. See “What Happens When a Message
Is Delayed During Processing?” on page 10-11.

Use of filters and destination sort keys. See “Message Unit-of-Order Advanced Topics” on
page 10-10.

Message Processing with Unit-of-Order
The WebLogic Server Unit-of-Order feature enables a message producer or group of message
producers acting as one, to group messages into a single unit that is processed sequentially in the
order the messages were created. The message processing of a single message is complete when
a message is acknowledged, committed, recovered, or rolled back. Until message processing for
a message is complete, the remaining unprocessed messages for that Unit-of-Order are blocked.

This section provides information on rules for JMS acknowledgement modes when using
Message Unit-of-Order:

No messages from a Unit-of-Order are processed in parallel when the acknowledgement
mode is CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, or DUPS_OK_ACKNOWLEDGE.

When the consumer is closed, the current message processing is completed, regardless of
the session’s acknowledge mode.

CLIENT_ACKNOWLEDGE – The application calling Message.acknowledge and
Session.recover indicate which messages are completely processed in the
Unit-of-Order.

http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/docs.html

Unders tand ing Message Process ing wi th Un i t -o f -Order

Programming WebLogic JMS 10-3

AUTO_ACKNOWLEDGE – The session automatically acknowledges a client’s receipt of a
message when it has either successfully returned from a call to receive or when the
MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of onMessage(msg)
indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A, consumerA.receive
is completed when one of the following occurs: consumerA.receive,
consumerA.setMessageListener, or consumerA.close.

DUPS_OK_ACKNOWLEDGE – The session automatically acknowledges a client’s receipt of a
message when it has either successfully returned from a call to receive or when the
MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of onMessage(msg)
indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive() is completed when one of the following occurs:
consumerA.receive(), consumerA.setMessageListener(), or
consumerA.close().

NO_ACKNOWLEDGE – The session provides no order processing guarantees. Messages can be
processed in parallel to different available consumers.

Message Delivery with Unit-of-Order
Message Unit-of-Order provides that messages are delivered in accordance with the following
rules:

Member messages of a Unit-of-Order are delivered to queue consumers sequentially in the
order they were created. The message order within a Unit-of-Order will not be affected by
sort criteria, priority, or filters. However, messages that are uncommitted, have a
Redelivery Delay, or have an unexpired TimetoDeliver timer will delay messages that
arrive after them.

Unit-of-Order messages are processed one at a time. The processing completion of one
message allows the next message in the Unit-of-Order to be delivered.

Unit-of-Order messages sent to a distributed queue reside on only one physical member of
the distributed queue. For more information, see “Using Unit-of-Order with Distributed
Destinations” on page 10-12.

Using Message Un i t -o f -Order

10-4 Programming WebLogic JMS

All uncommitted or unacknowledged messages from the same Unit-of-Order must be in the
same transaction, or if non-transactional, the same JMSSession. When one message in the
Unit-of-Order is uncommitted or unacknowledged, the other messages are deliverable only
to the same transaction or JMSSession. This keeps all unacknowledged messages from the
same Unit-of-Order in one recoverable operation and allows order to be maintained despite
rollbacks or recoveries.

A queue that has several messages from the same Unit-of-Order must complete processing
all of them before they can be delivered to any queue consumer or the next message can be
delivered to the queue.

For Example, when Messages M1 through Mn are delivered:

– as part of a transaction and the transaction is rolled back (processing is complete). Then
messages M1 through Mn are delivered to any available consumer.

– outside of a transaction and the messages are recovered (processing is complete). Then
messages M1 through Mn are delivered to any available consumer.

– outside of a transaction and the messages are acknowledged (processing is complete).
Then the undelivered message Mn+1 is delivered to any available consumer.

Message Unit-of-Order Case Study
This section provides a simple case study for Message Unit-of-Order based on ordering a book
from an online bookstore.

“Joe Orders a Book” on page 10-4

“What Happened to Joe’s Order” on page 10-5

“How Message Unit-of-Order Solves the Problem” on page 10-6

Joe Orders a Book
XYZ Online Bookstore implements a simple processing design that uses JMS to process
customer orders. The JMS processing system is composed of:

A message producer sending to a queue (Queue1).

Multiple message driven beans (MDBs), such as MdbX and MdbY, that process messages
from Queue1.

A database (myDB) that contains order and order status information.

Message Uni t -o f -Orde r Case S tudy

Programming WebLogic JMS 10-5

Joe logs into his XYZ Online Bookstore account and searches his favorite book topics. He
chooses a book, proceeds to the checkout, and completes the sales transaction. Then Joe realizes
he has previously purchased this same item, so he cancels the order. One week later, the book is
delivered to Joe.

What Happened to Joe’s Order
In Joe’s ordering scenario, his cancel order message was processed before his purchase order
message. The result was that Joe received a book he did not wish to purchase. The following steps
demonstrate how Joe’s order was processed.

The following diagram and corresponding actions demonstrate how Joe’s order was processed.

Figure 10-1 Workflow for Joe’s Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

MdbX

MdbY

myDBQueue1client
(1,3) (2,4)

(5)

(6)

(7,8,9)

Using Message Un i t -o f -Order

10-6 Programming WebLogic JMS

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. MdbY writes the cancel message to the database. Because there is no corresponding order
message, there is no order message to remove from the database.

8. MdbX writes the order message to the database.

9. An application responsible for shipping books reads the database, sees the order message, and
initiates shipment to Joe’s home.

Although the Java Message Service Specification provides an ordered message delivery, it only
provides ordered message delivery between a single instance of a producer and a single instance
of a consumer. In Joe’s case, multiple MDBs where available to consume messages from Queue1
and the processing order of the messages was no longer guaranteed.

How Message Unit-of-Order Solves the Problem
To ensure that all messages in Joe’s order are processed correctly, the system administrator for
XYZ Bookstore configures a Message Unit-of-Order based on a user session, such that all
messages from a user session have a Unit-of-Order name attribute with the value of the session
id. See “How to Create a Unit-of-Order” on page 10-8. All messages created during Joe’s user
session are processed sequentially in the order they were created because WebLogic Server
guarantees that messages in a Unit-of-Order are not processed in parallel.

The following diagram and corresponding actions demonstrate how Joe’s order was processed
using Message Unit-of-Order.

http://www.java.sun.com/products/jms/docs.html

Message Uni t -o f -Orde r Case S tudy

Programming WebLogic JMS 10-7

Figure 10-2 Workflow for Joe’s Order Using Unit-of-Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. Message B on MdbY is blocked until MdbX acknowledges the order message. See “What
Happens When a Message Is Delayed During Processing?” on page 10-11.

8. Message A is committed and written to the database.

9. Message B is committed and written to the database.

MdbX

MdbY

myDBQueue1client
(1,3) (2,4)

(5)

(6,7)

(8,9)

Using Message Un i t -o f -Order

10-8 Programming WebLogic JMS

Because there is a corresponding order message, Joe’s order is removed from the database
and he does not receive a book.

How to Create a Unit-of-Order
The following sections describe how to create a Message Unit-of-Order. Also see “Message
Delivery with Unit-of-Order” on page 10-3 and “Message Unit-of-Order Advanced Topics” on
page 10-10.

“Creating a Unit-of-Order Programmatically” on page 10-8

“Creating a Unit-of-Order Administratively” on page 10-9

“Unit-of-Order Naming Rules” on page 10-10

Creating a Unit-of-Order Programmatically
Use the setUnitOfOrder() method of the WLMessageProducer interface to associate a
producer with a Unit-of-Order name.

For example:

getProducer().setUnitOfOrder(“myUOOname”);

The Unit-of-Order name attribute value is set to myUOOname.

Once a producer is associated with a Unit-of-Order, all messages sent by this producer are
processed as a Unit-of-Order until either the producer is closed or the association between the
producer and the Unit-of-Order is dissolved.

The following code provides an example of how to associate a producer with a Unit-of-Order:

Listing 10-1 Using the WLMessageProducer Interface to Create a Unit-of-Order

.

.

.

queue = (Queue)(ctx.lookup(destName));

qsender = (WLMessageProducer) qs.createProducer(queue);

qsender.setUnitOfOrder();

uooname = qsender.getUnitOfOrder();

System.out.println("Using UnitOfOrder :" + uooname);

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html

How to Create a Un i t -o f -Order

Programming WebLogic JMS 10-9

.

.

.

Creating a Unit-of-Order Administratively
The following section provides information on how to configure JMS connection factories or
JMS destinations to enable Message Unit-of-Order.

Configuring Unit-of-Order for a Connection Factory and Destinations
Use one of the following methods to configure JMS connection factories and destinations to
enable Message Unit-of-Order:

Configure a connection factory to always use a user-generated Unit-of-Order name. As a
result, all producers created from such a connection factory have Unit-of-Order enabled.
See Configure connection factory unit-of-order parameters in the Administration Console
Help.

Configure a connection factory to always use a system-generated Unit-of-Order name for
each session. See Configure unit-of-order parameters in the Administration Console Help.

A client can call WLProducer.setUnitOfOrder(name) and change the initial connection
factory setting on the producer.

Configure a standalone or distributed destination to always use a system-generated
Unit-of-Order name. See the following topics in the Administration Console Help:

– Configure advanced topic parameters

– Configure advanced queue parameters

– Uniform distributed topics - configure advanced parameters

– Uniform distributed queues - configure advanced parameters

– Configure advanced JMS template parameters

You should administratively configure a Unit-of-Order on a connection factory or destination
when interoperating with legacy JMS applications. This method provides a simple mechanism to
ensure messages are processed in the order they are created without making any code changes.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureUOOParams.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureUOOParams.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureUDTAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureUDQAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateAdvanced.html

Using Message Un i t -o f -Order

10-10 Programming WebLogic JMS

Unit-of-Order Naming Rules
A Unit-of-Order is identified by a name attribute. Within a destination, messages that have the
same value for the Unit-of-Order name attribute belong to the same Unit-of-Order. The name can
be provided by either the system or the application. Messages in the same Unit-of-Order all share
the same name. See “How to Create a Unit-of-Order” on page 10-8.

The name attribute for a Unit-of-Order must adhere to the following rules:

A valid value for the Unit-of-Order name attribute is any non-null and non-empty string.

System-generated Unit-of-Order names are timestamp-based and statistically unique.

Applications can supply their own Unit-of-Order names. For example, WebLogic
Integration applications can use Workflow names and Web Services applications can use
conversation names.

Message Unit-of-Order has its own name space. A Unit-of-Order does not need to be
unique with respect to other named objects. For instance, it is valid to have a Unit-of-Order
named Foo and a queue named Foo.

The scope of a Message Unit-of-Order is limited to a single destination. Two different
Units of Order on two destinations can have the same name.

One or more producers can send messages with the same Unit-of-Order name by using the
same string to create the Unit-of-Order. The Unit-of-Order name can be extracted from a
delivered message. Example:

msg.getStringProperty("JMS_BEA_UnitOfOrder");

So a system-generated Unit-of-Order name can be used by more than one producer. This
paradigm works just as well for application-assigned Unit-of-Order names. It will be most
efficient if the information is serialized in only one place, so a property like Conversation
ID can be stored only as the Unit-of-Order name. This paradigm does not work when the
message has been sent through a non-Unit-of-Order JMS provider (releases prior to
WebLogic 9.0 or non-WebLogic JMS providers).

Message Unit-of-Order Advanced Topics
The following sections describe how Unit-of-Order processes messages in advanced or more
complex situations:

“What Happens When a Message Is Delayed During Processing?” on page 10-11

Message Un i t -o f -Orde r Advanced Top ics

Programming WebLogic JMS 10-11

“What Happens When a Filter Makes a Message Undeliverable” on page 10-11

“What Happens When Destination Sort Keys are Used” on page 10-12

“Using Unit-of-Order with Distributed Destinations” on page 10-12

“Using Unit-of-Order with Topics” on page 10-13

“Using Unit-of-Order with JMS Message Management” on page 10-14

“Using Unit-of-Order with WebLogic Store-and-Forward” on page 10-14

“Using Unit-of-Order with WebLogic Messaging Bridge” on page 10-15

What Happens When a Message Is Delayed During
Processing?
There are many situations that can occur during message processing that would normally change
the order in which a message is processed. The following is a short list of typical message
processing states that make a message not ready for delivery:

A message is within an uncommitted transaction.

A message’s TimeToDeliver value prevents it from being delivered until the
TimeToDeliver interval has elapsed.

A consumer calls a recover or rollback that prevents a message from being re-delivered
until the RedeliveryDelay interval has elapsed.

Suppose messages A and B arrive respectively in the same Unit-of-Order, and message A cannot
be delivered for any reason listed above. Even though nothing is delaying the delivery of message
B, it is not deliverable until message A in its Unit-of-Order has been delivered.

What Happens When a Filter Makes a Message
Undeliverable
Using a filter and a Unit-of-Order can provide unexpected behaviors. Suppose messages A
through Z are in the same Unit-of-Order in the same Queue. Consumer1 has a filter, and messages
A, B, and C satisfy the filter, and they are delivered to Consumer1.

1. Messages D through Z are undeliverable until messages A, B, and C are acknowledged.

2. Messages A, B, and C are acknowledged or recovered.

Using Message Un i t -o f -Order

10-12 Programming WebLogic JMS

3. Message D is available to the message delivery system.

4. Message D does not pass the filter and can never be presented to Consumer1.

5. Messages E through Z are undeliverable until message D is processed.

The transaction that contains message D must be rolled back.

Once message D is processed, messages E through Z can be delivered.

For more information, see “Filtering Messages” on page 5-34.

What Happens When Destination Sort Keys are Used
Destination sort keys control the order in which messages are presented to consumers when
messages are not part of a Unit-of-Order or are not part of the same Unit-of-Order.

For example, messages A and B arrive and in the same Unit-of-Order on a queue that is sorted by
priority and the sort order is depending, but message B has a higher priority than A.

Even though message B has a higher priority than message A, message B is still not deliverable
until message A has been processed because they are in the same Unit-of-Order. If a message C
arrives and either does not have a Unit-of-Order or is not in the same Unit-of-Order as message
A, the priority setting of message C and the priority setting of message A determine the delivery
order. See Configuring JMS System Resources in Configuring and Managing WebLogic JMS.

Using Unit-of-Order with Distributed Destinations
As previously discussed in the “Message Processing According to the JMS Specification” on
page 10-2, the Java Message Service Specification does not guarantee ordered message delivery
when applications use distributed queues. WebLogic JMS directs messages with the same
Unit-of-Order and having a distributed destination target to the same distributed destination
member. The member is selected by the destination’s Unit-of-Order configuration:

“Using the Path Service” on page 10-12

“Using Hash-based Routing” on page 10-13

Using the Path Service
You can configure the WebLogic Path Service to provide a persistent map that can store the
information required to route the messages contained in a Unit-of-Order to its destination
resource—a member of a uniform distributed destination. If the WebLogic Path Service is
configured for a uniform distributed destination, the routing path to a member destination is

http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#configure_jms_destination_key
http://www.java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#Path_Service

Message Un i t -o f -Orde r Advanced Top ics

Programming WebLogic JMS 10-13

determined by the server using the run-time load balancing heuristics for the distributed queue.
See Using WebLogic Path Service in Configuring and Managing WebLogic JMS.

Using Hash-based Routing
If the WebLogic Path Service is not configured, the default routing path to a uniform queue
member is chosen by the server based on the hash codes of the Message Unit-of-Order name and
the uniform distributed queue members. An advantage of this routing mechanism is that routes to
a distributed queue member are calculated quickly and do not require persistent storage in a
cluster.

Consider the following when implementing Message Unit-of-Order in conjunction with
Hash-based routing:

If a distributed queue member has an associated Unit-of-Order and is removed from the
distributed queue, new messages are sent to a different distributed queue member and the
messages will not be continuous with older messages.

If a distributed Queue member has an associated Unit-of-Order and is unreachable, the
producer sending the message will throw a JMSOrderException and the messages are not
routed to other distributed Queue members. The exception is thrown because the JMS
messaging system can not meet the quality-of-service required — only one distributed
destination member consumes messages for a particular Unit-of-Order.

Configuring Routing on Uniform Distributed Destinations
Refer to one of the following topics to configure either the Path service or Hash-based routing
mechanism on uniform distributed destinations using Message Unit-of-Order:

Uniform distributed topics - configure advanced parameters in the Administration Console
Help

Uniform distributed queues - configure advanced parameters in the Administration Console
Help

Using Unit-of-Order with Topics
Assigning a Unit-of-Order does not prohibit parallel processing of a message by two subscribers
on the same topic. Since individual subscribers for a topic have their own destination and message
list, similar to a queue with one consumer, messages are processed by all subscribers according
to the Unit-of-Order assigned at the time of production.

message URL http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#Path_Service
http://e-docs.bea.com/wls/docs92/jms_admin/advance_config.html#Path_Service
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureUDTAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureUDQAdvanced.html

Using Message Un i t -o f -Order

10-14 Programming WebLogic JMS

If messages are sent to a distributed topic, the order of the messages on a particular physical
member is defined by the order the messages arrive at the member. See “Publish/Subscribe
Messaging” on page 2-5.

Using Unit-of-Order with JMS Message Management
JMS message management allows a JMS administrator to move and delete most messages in a
running JMS Server. This allows an administrator to violate the delivery rules specified in
“Message Delivery with Unit-of-Order” on page 10-3.

If messages A, B, C, and D are produced and sent to destination D1 and belong to Unit-of-Order
foo, consider the following:

Moving messages C and D to destination D2 may allow parallel processing of messages
from both destinations.

Moving messages B and C to destination D2 may allow parallel processing of message A
and messages B and C. After message A is processed, message D is deliverable.

For applications that depend on maintaining message order, a best practice is to move all of the
messages in a Unit-of-Order as a single group.

To ensure Unit-of-Order delivery rules are maintained, use the following steps:

1. Pause the source destination and the target destination.

2. Select all of the messages with the Unit-of-Order you would like to move.

3. Move the selected messages to the target destination. If necessary, sort them according to the
order that you want them processed.

4. Resume the source and target destinations.

For more information, see Troubleshooting WebLogic JMS in Configuring and Managing
WebLogic JMS.

Using Unit-of-Order with WebLogic Store-and-Forward
WebLogic Store-and-Forward supports Message Unit-of-Order. For example, a
Store-and-Forward producer sends messages with a Unit-of-Order named Foo. If the producer
disconnects and reconnects through a different connection, the producer creates another
Unit-of-Order with the name Foo and continues sending messages. All messages sent before and
after the reconnect are directed through the same Store-and-Forward agent. See Configuring and
Managing WebLogic Store-and-Forward.

http://e-docs.bea.com/wls/docs92/jms_admin/troubleshoot.html
http://e-docs.bea.com/wls/docs92/saf_admin/index.html
http://e-docs.bea.com/wls/docs92/saf_admin/index.html

L imi tat ions o f Mess age Un i t -o f -Order

Programming WebLogic JMS 10-15

Using Unit-of-Order with WebLogic Messaging Bridge
If both the source and target destinations are WebLogic Server 9.0 or later Messaging Bridge
instances, you can enable PreserveMsgProperty on the Messaging Bridge to preserve the
Unit-of Order name and set the producer’s Unit-of-Order accordingly. See Configuring and
Managing WebLogic Messaging Bridge.

Limitations of Message Unit-of-Order
This section provides additional general information to consider when using Message
Unit-of-Order:

A browser enumeration contains the current queue messages in the order they are to be
received by the browser, where current is defined as those messages that are deliverable.
At most, the first message within a Unit-of-Order is deliverable. Subsequent messages in
the same Unit-of-Order are not deliverable.

Some combinations of Unit-of-Order features can result in the starvation of competing
Unit-of-Order message streams, including the under utilization of resources when the
number of consumers exceed the number of in-flight messages with different Unit-of-Order
names. You will need to test your applications under maximum loads to optimize your
system’s performance and eliminate conditions that under utilize resources.

This release of WebLogic Server Message Unit-of-Order does not support clients
connecting to a non-Unit-of-Order JMS provider (releases prior to WebLogic 9.0 or
non-WebLogic JMS providers).

http://e-docs.bea.com/wls/docs92/bridge/index.html
http://e-docs.bea.com/wls/docs92/bridge/index.html

Using Message Un i t -o f -Order

10-16 Programming WebLogic JMS

Programming WebLogic JMS 11-1

C H A P T E R 11

Using Unit-of-Work Message Groups

The following sections describe how to use Unit-of-Work Message Groups to provide groups of
messages when using WebLogic JMS:

“What Are Unit-of-Work Message Groups?” on page 11-2

“Understanding Message Processing With Unit-of-Work” on page 11-2

“How to Create a Unit-of-Work Message Group” on page 11-6

“Message Unit-of-Work Advanced Topics” on page 11-13

“Limitations of UOW Message Groups” on page 11-15

Us ing Un i t -o f -Work Message Groups

11-2 Programming WebLogic JMS

What Are Unit-of-Work Message Groups?
Many applications need an even more restricted notion of a group than provided by the Message
Unit-of-Order (UOO) feature. Therefore, release 9.2 introduces the Unit-of-Work (UOW)
Message Groups, which allows applications to send JMS messages, identifying some of them as
a group and allowing a JMS consumer to process them as such. For example, an JMS producer
can designate a set of messages that need to be delivered to a single client without interruption,
so that the messages can be processed as a unit. Further, the client will not be blocked waiting for
the completion of one unit when there is another unit that is already complete.

The following sections describe how to use Message Unit-of-Work to provide strict message
grouping when using WebLogic JMS:

“Understanding Message Processing With Unit-of-Work” on page 11-2

“How to Create a Unit-of-Work Message Group” on page 11-6

“Message Unit-of-Work Advanced Topics” on page 11-13

“Limitations of UOW Message Groups” on page 11-15

Understanding Message Processing With Unit-of-Work
These sections provide basic conceptual information about UOW message groups.

Basic UOW Terminology
Table 11-1 defines the terms used to define UOW.

Table 11-1 Unit-of-Work Terminology

Term Definition

Unit of Work (UOW) A set of JMS messages that need to be processed as a single unit.

UOW Component Message A message that is part of a UOW. In order for WebLogic JMS to
identify a message as part of a UOW, the message must have the JMS
properties described in “How To Write a Producer to Set UOW
Message Properties” on page 11-6.

Unders tand ing Message P rocess ing Wi th Un i t -o f -Work

Programming WebLogic JMS 11-3

Rules For Processing UOW Messages
The following rules apply to UOW messages.

Rule One: All Messages Required For Processing
No message within the UOW will be available until all of them are available on the
terminal destination.

UOW Producer A producer that needs to split its work into multiple parts (i.e., a
creator of a UOW). Multiple producers can concurrently contribute
component messages to a UOW message, as illustrated in “Message
Unit-of-Work Case Study” on page 11-4.

If fact, a UOW producer can close midway through a UOW and a new
producer can complete the UOW message, while maintaining the
same strict component message integrity (e.g., detect duplicates, etc.).

Intermediate Destination A destination whose consumers have the job of processing
component messages separately rather than as a unit. No special
UOW configuration is required for intermediate destinations.

When a component message arrives on an intermediate destination it
will be made available without waiting for other component messages
to arrive. Further, if the intermediate destination is a distributed
destination, no special routing need occur. See “How to Write a UOW
Consumer and/or Producer For an Intermediate Destination” on
page 11-9.

Terminal Destination A destination whose consumers have the job of processing a full
UOW. A destination is identified as a terminal destination by the
Unit-of-Work Message Handling Policy parameter on standalone
destinations, distributed destinations, or JMS templates. See
“Configuring Terminal Destinations” on page 11-10.

Available/Visible Messages Equivalent JMS terms that refer to a message becoming ready for
consumption, pending the reception of any messages that precede it.
For example, a JMS message is not available until its birth time has
been reached or a JMS message that is sent as part of a transaction is
not visible until that transaction is committed.

Table 11-1 Unit-of-Work Terminology (Continued)

Term Definition

Us ing Un i t -o f -Work Message Groups

11-4 Programming WebLogic JMS

Rule Two: Message Reordering
No matter what order the messages arrive to the terminal destination, they will be put into
the order specified by the UOW producer.

Rule Three: Gap Freedom
The group of messages will be delivered to the user without gaps. That is, all messages in
the group will be delivered to the user before messages from any other group (or part of
no group at all).

Rule Four: Single Consumer Consumption
The group of messages will be delivered to the same consumer.

Message Unit-of-Work Case Study
This section provides a simple case study for Message Unit-of-Work based on an online order
that requires a variety of merchandise from multiple companies.

Jill Orders Miscellaneous Items From an Online Retailer
The Megazon online retailer implements a processing design that uses JMS to process customer
orders for a variety of merchandise, some of which need to be routed to Megazon’s partner
companies to complete the order. For example, Megazon can directly fulfill book orders, but must
re-route some parts of the order for certain electronics or houseware items. Since Megazon is
configured to use UOW, items in an order can be routed as UOW messages to these intermediate
company destinations before being passed onto Megazon’s terminal destination where all the
UOW messages that comprise the order are gathered before a final invoice can be processed.

The Megazon JMS processing system is composed of:

A UOW producer sending order fulfillment component messages with the required UOW
properties to the appropriate intermediate and/or terminal destinations.

Intermediate destinations for non-book items, where UOW component messages are
processed by consumer and/or producer clients before being passed onto the final UOW
destination.

A UOW terminal destination where the component messages are gathered for final
processing.

Jill logs into her Megazon account and does some holiday shopping. She chooses a book, flash
drive, MP3 player, and a lava lamp and then proceeds to the checkout, and completes the sales
transaction.

Unders tand ing Message P rocess ing Wi th Un i t -o f -Work

Programming WebLogic JMS 11-5

How Message Unit-of-Work Completes the Order
To ensure that all messages in Jill’s order are processed as a single unit, the order-taking JMS
producer client sets UOW properties on her order messages to indicate that they are part of a
single unit. These UOW message properties must also be copied by any consumer and/or
producer clients listening on the intermediate Gadget Planet, Widget World, and Desperate
Housewares destinations before they pass the UOW messages onto the terminal destination. Last,
the system administrator for Megazon configures the terminal destination to UOW Message
Handling Policy parameter to Single Message Delivery. See “How to Create a Unit-of-Work
Message Group” on page 11-6.

The following diagram and corresponding actions demonstrate how Jill’s order was processed
using Message Unit-of-Work.

Figure 11-1 Workflow for Jill’s Order Using Unit-of-Work

1. Jill clicks the order button from her shopping cart.

2. The order is split into three messages that use the same unique UOW name:

– SEQ#1, which is routed to the intermediate Gadget Planet queue, where a consumer
processes the Flash Drive order before passing SEQ#1 onto a producer who then routes
it to the intermediate Widget World queue, where a consumer processes the MP3 player
order before passing SEQ#1 to the terminal Megazon queue for final invoice
processing.

– SEQ#2, which is routed to the intermediate Desperate Housewares queue, where a
consumer processes the lava lamp order before passing SEQ#1 onto a producer who
routes it to the Megazon terminal processing queue for final invoice processing.

Us ing Un i t -o f -Work Message Groups

11-6 Programming WebLogic JMS

– SEQ#3, which is routed directly to Megazon’s terminal queue for book order
fulfillment and for final invoice processing.

3. The terminal Megazon queue gathers the three UOW messages before forming them into an
ObjectMessage list for delivery to Megazon’s invoice consumer client.

4. Jill receives an invoice that shows her entire order has been processed.

How to Create a Unit-of-Work Message Group
The following sections describe how to create a Message Unit-of-Work.

“How To Write a Producer to Set UOW Message Properties” on page 11-6

“How to Write a UOW Consumer and/or Producer For an Intermediate Destination” on
page 11-9

“Configuring Terminal Destinations” on page 11-10

“How to Write a UOW Consumer For a Terminal Destination” on page 11-11

How To Write a Producer to Set UOW Message Properties
UOW enables a producer to split its work into multiple parts to accomplish its goal. UOW is, in
effect, taking these multiple messages and joining them into one. Whether component messages
are delivered as parts of a single message or as many messages, it is easiest to envision them as
a single virtual message, as well as individual messages.

In order for WebLogic JMS to identify a message as part of a UOW, the message must have the
JMS properties in Table 11-2 set by the producer client.

How to Create a Un i t -o f -Work Message Group

Programming WebLogic JMS 11-7

If the UnitOfWork property is not set, then SequenceNumber and End will be ignored.

Example UOW Producer Code
The following sample client code sample sets the UOW properties defined in Table 11-2.

Listing 11-1 Sample UOW Producer Message Properties

 for (int i=1; i<=100; i++)

 {

Table 11-2 Unit-of-Work Properties

Type Description

JMS_BEA_UnitOfWork A string property that is set by the standard JMS mechanism for
setting properties. For example:
message.setStringProperty("JMS_BEA_UnitOfWork",
"MyUnitOfWorkName")

To avoid naming conflicts, the UOW ID should never be reused. For
example, if messages are lost or retransmitted, then they may be
perceived as part of a separate UOW. For this reason, BEA
recommends using a Java universally unique identifier (UUID). See
http://java.sun.com/j2se/1.5.0/docs/api/java/ut
il/UUID.html.

JMS_BEA_UnitOfWorkSequ
enceNumber

An integer property that is set by the standard JMS mechanism for
setting properties. For example,

message.setIntProperty("JMS_BEA_UnitOfWorkSeque
nceNumber", 5)

The legal values are integers greater than or equal to 1

JMS_BEA_IsUnitOfWorkEn
d

A boolean property that is set by the standard JMS mechanism for
setting properties. For example:
message.setBooleanProperty("JMS_BEA_IsUnitOfWor
kEnd", true)

When this property is true, the message is the last in the unit-of-work.
When this property is false or nonexistent, the message is not last in
the unit-of-work.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/UUID.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/UUID.html

Us ing Un i t -o f -Work Message Groups

11-8 Programming WebLogic JMS

 sendMsg.setStringProperty("JMS_BEA_UnitOfWork","joule");

 sendMsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",i);

 if (i == 100)

 {

 System.out.println("set the end of message flag for message # " + i);

 sendMsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",true);

 }

 qSender.send(sendMsg, DeliveryMode.PERSISTENT,7,0);

 }

UOW Exceptions
The following exceptions may be thrown to the producer when sending JMS messages to a
terminal destination. When a UOW exception is town, the UOW message is not delivered.

Except for the last one, they are all in the weblogic.jms.extensions package and are
subclasses of JMSException.

BadSequenceNumberException – This will occur if (a) UnitOfWork is set on the
message, but SequenceNumber is not or (b) the SequenceNumber is less than or equal to
zero.

OutOfSequenceRangeException – This will be thrown if (a) a message is sent with a
SequenceNumber that is higher than the sequence number of the message which has
already been marked as the end of the unit or (b) a message is sent with a sequence number
which is lower than a message which has already arrived in the same unit, yet the new
message is marked as the end message.

DuplicateSequenceNumberException – This will be thrown to the producer if it sends a
message with a sequence number which is the same as a previously sent message in the
same UOW.

JMSException – A JMS exception will be thrown if a message has both the UnitOfOrder
property set and the UnitOfWork property set.

Tip: As a programming best-practice, consider having your UOW producers send all
component messages that comprise a new UOW under a single transaction. This way,
either all of the work is completed or none of it is. For example, if a UOW producer gets
an exception or crashes partway through a UOW and wants to then cancel the current

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/package-summary.html

How to Create a Un i t -o f -Work Message Group

Programming WebLogic JMS 11-9

UOW, then the entire transaction will be rolled back and the application will not need to
make a decision for each message after a failure.

How to Write a UOW Consumer and/or Producer For an
Intermediate Destination
An intermediate destination is one whose consumers have the job of processing component
messages separately rather than as a unit. A JMS ForwardHelper extension API is available to
assist developers who are writing producers and/or consumers at intermediate destinations. This
is because there are many message properties that need to be copied from the incoming message
to the outgoing message. For example, the message properties that control the behavior of UOW
need to be copied.

The following intermediate consumer code sample copies the UOW properties defined in
Table 11-2.

Listing 11-2 Sample Client Code for UOW Intermediate Destination

 msg = qReceiver1.receive();

 try

 {

 text = msg.getText();

 TextMessage forwardmsg = qsess.createTextMessage();

 forwardmsg.setText(text);

 forwardmsg.setStringProperty("JMS_BEA_UnitOfWork",

 msg.getStringProperty("JMS_BEA_UnitOfWork"));

 forwardmsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",

 msg.getIntProperty("JMS_BEA_UnitOfWorkSequenceNumber"));

 if (tm.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"))

 forwardmsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",

 msg.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"));

 qsend.send(forwardmsg);

 }

Us ing Un i t -o f -Work Message Groups

11-10 Programming WebLogic JMS

Note that the three UOW properties are copied from the incoming message to the outgoing
message.

Configuring Terminal Destinations
A destination is identified as a terminal destination by the Unit-of-Work Message Handling
Policy parameter on standalone destinations, distributed destinations, or JMS templates. There is
also a parameter that allows for expiration of incomplete work on terminal destinations.

Using the Administration Console, these Advanced configuration options are available on the
General Configuration page for all destination types (or by using the DestinationBean API), as
well as on JMS templates (or by using the TemplateBean API).

Table 11-3 Unit-of-Work Configuration Options

Console Label/MBean Name Description

Unit-of-Work (UOW) Message
Handling Policy
UnitOfWorkHandlingPoli
cy

Specifies whether the Unit-of-Work (UOW) feature is enabled for a
destination.
• Pass-Through – By default, destinations do not treat

messages as part of a UOW.
• Single Message Delivery – Select this option if UOW

consumers are receiving component messages on this terminal
destination. When selected, component UOW messages are
formed into a list and are consumed as an ObjectMessage
containing the java.util.list.

Expiration Time for Incomplete
UOW Messages
IncompleteWorkExpirati
onTime

The maximum length of time, in milliseconds, before undeliverable
messages in an incomplete UOW are expired. Such messages will
then follow the expiration policy defined for undeliverable
messages. Message expiration begins once the first UOW message
arrives.

This field is effective only if Unit-of-Work Handling Policy is set to
Single Message Delivery. The default value of -1 means that
UOW messages will never expire.

Note: If an expiration time is not configured on terminal
destination, it is possible for a UOW message to wait
indefinitely on the destination when a component message
was either: (A) never sent/committed, (B) expired, or (C)
manually deleted).

http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/DestinationBean.html#MessagingPerformancePreference
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/TemplateBean.html#MessagingPerformancePreference

How to Create a Un i t -o f -Work Message Group

Programming WebLogic JMS 11-11

For instructions on configuring unit-of-work parameters on a standalone destinations, distributed
destinations, or JMS templates using the Administration Console, see the following sections in
the Administration Console Online Help:

Configure advanced topic parameters

Configure advanced queue parameters

Uniform distributed topics - configure advanced parameters

Uniform distributed queues - configure advanced parameters

Configure advanced JMS template parameters

For more information about these parameters, see DestinationBean and TemplateBean in the
WebLogic Server MBean Reference.

UOW Message Routing for Terminal Distributed Destinations
The Unit-of-Order Routing field is used to determine the routing of UOW messages for uniform
distributed destinations, using either the Path Service or Hash-based Routing. And similar to
UOO, when a UOW terminal destination is also a distributed destination, all messages within a
UOW must go to the same distributed destination member. For more information on the UOO
routing mechanisms, see Using Unit-of-Order With Distributed Destinations in Programming
WebLogic JMS.

However, basic UOO routing and UOW routing are not exactly the same. Strictly, all messages
within a single UOO do not have to go to the same member: when there are no more unconsumed
messages for a certain UOO, newly arrived messages can go to any member. In UOW, message
routing must be guaranteed until the whole UOW has arrived at the physical destination and
consumption is irrelevant.

How to Write a UOW Consumer For a Terminal Destination
The following sample UOW consumer code shows how a consumer listening on a terminal
destination verifies that all component messages sent are contained within the final UOW
message.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureUDTAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureUDQAdvanced.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateAdvanced.html
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/DestinationBean.html#MessagingPerformancePreference
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/TemplateBean.html#MessagingPerformancePreference
message URL http://e-docs.bea.com/wls/docs92/jms/uoo.html#advanced_uoo_topics_distributed_queues

Us ing Un i t -o f -Work Message Groups

11-12 Programming WebLogic JMS

Listing 11-3 Sample Client Code For UOW Terminal Destination

 {

 msg = qReceiver1.receive();

 if (msg != null)

 {

 count++;

 System.out.println"Message received: " + msg);

 //Check that this one message contains all the messages sent.

 ArrayList msgList = (ArrayList)(((ObjectMessage)msg).getObject());

 numMsgs = msgList.size();

 System.out.println("no. of messages in the msg = " + numMsgs);

 }

 } while (msg != null);

Message Un i t -o f -Work Advanced Top ics

Programming WebLogic JMS 11-13

Message Unit-of-Work Advanced Topics
The following sections describe how Unit-of-Work processes messages in advanced or more
complex situations.

Message Property Handling
UOW is, in effect, taking multiple messages and joining them into one. This is true whether the
messages are delivered as one message or not. For example, each message will have an
independent expiration time, but if one expires, none of them will ever be delivered. Therefore,
as a best practice your message producers should make sure that messages that make up a UOW
are as uniform as possible.

Whether component messages are delivered as parts of a single message or as many messages, it
is easiest to envision them as a single virtual message, as well as individual messages. For
example, since the messages need to be seen consecutively, UOW’s effect on message sorting
can be viewed as determining the correct placement of the virtual message. The same is true of
message selection (a consumer must see the whole group or not see the group at all); WebLogic
JMS must determine whether “consumer A must see the virtual message” before deciding to
deliver all of the messages to consumer A.

System-Generated Properties
Some fields of the virtual message will need to be populated independent of the component
messages. For example, the virtual message cannot get its value for delivery count from a
component message. This is the complete list of property values that are system-generated:

 Timestamp

 Delivery count (redelivered)

 Destination

Final Component Message Properties
Otherwise, the message properties will be derived from the component messages. However,
different properties get values derived in different ways, as suits their nature. One way to derive
virtual message properties is to get their values directly from one of the component messages (this
simplifies the handling of component messages with different property values). For simplicity,
the last message in the UOW is the message from which the values are derived. For example, the

Us ing Un i t -o f -Work Message Groups

11-14 Programming WebLogic JMS

message priority for the virtual message will be the priority of the message marked as last (by
having the property JMS_BEA_IsUnitOfWorkEnd set to true).

This is the complete list of virtual message properties that are derived from the values contained
in the last message in the UOW:

 Message ID

 Correlation ID

 Priority

 User Properties

 User ID

Component Message Heterogeneity
Another method for handling component message heterogeneity is to coerce all component
messages into the same value. For example, as mentioned earlier, a mixture of expiration times
doesn’t make sense. This is the complete list of message properties that are handled in this way:

 Delivery Mode

 Expiration

ReplyTo Message Property
The ReplyTo property value is not reflected in the virtual message because it isn’t used in
message selection or sorting and is only useful to the application, and is therefore ignored.

UOW and Uniform Distributed Destinations
As discussed in “UOW Message Routing for Terminal Distributed Destinations” on page 11-11,
the Unit-of-Order Routing field is used to determine the routing mechanism for UOW messages.
One other requirement for UOW in distributed destinations is that all member destinations must
have the same value for the UOW Handling Policy. A configuration that is configured otherwise
is invalid.

As a best practice, the use of topics (especially distributed topics) is discouraged for use as
intermediate UOW destinations, as this configuration may possibly lead to duplicate component
messages.

L imi ta t ions o f UOW Message Groups

Programming WebLogic JMS 11-15

UOW and Store-and-Forward Destinations
The WebLogic Store-and-Forward service supports UOW, with the exception that a
store-and-forward (SAF) imported destination cannot be a terminal destination. However, SAF
obeys the routing rules of UOW messages, just as it does for UOO messages. See Using
Unit-of-Order With WebLogic Store-and-Forward in Programming WebLogic JMS.

Limitations of UOW Message Groups
This section provides additional general information to consider when using UOW.

The JMS C JNI client is not able to process UOW messages at a terminal destination, since
they are object messages. It can, however, be used as a UOW producer or on an
intermediate destination.

UOW is poorly suited for sets of large file transfers. Ideally, your messaging environment
is configured for lower max message sizes and to facilitate the streaming transfer of large
chunks of data (such as large files) from a single producer to a single consumer. UOW
doesn't handle this use-case because the individual messages are accumulated back into
one giant message on the server before they are pushed to the consumer, rather than
streamed.

message URL http://e-docs.bea.com/wls/docs92/jms/uoo.html#advanced_uoo_topics_saf
message URL http://e-docs.bea.com/wls/docs92/jms/uoo.html#advanced_uoo_topics_saf

Us ing Un i t -o f -Work Message Groups

11-16 Programming WebLogic JMS

Programming WebLogic JMS 12-1

C H A P T E R 12

Using Transactions with WebLogic JMS

The following sections describe how to use transactions with WebLogic JMS:

“Overview of Transactions” on page 12-1

“Using JMS Transacted Sessions” on page 12-2

“Using JTA User Transactions” on page 12-4

“Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans”
on page 12-7

“Example: JMS and EJB in a JTA User Transaction” on page 12-7

Note: For more information about the JMS classes described in this section, access the latest
JMS Specification and Javadoc supplied on the Sun Microsystems’ Java Web site at the
following location: http://java.sun.com/products/jms/docs.html

Overview of Transactions
A transaction enables an application to coordinate a group of messages for production and
consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the transaction
are removed from the messaging system and the messages it sent within the transaction are
actually delivered. If the application rolls back the transaction, the messages it received within
the transaction are returned to the messaging system and messages it sent are discarded.

http://java.sun.com/products/jms/docs.html

Using T ransact ions w i th WebLog ic JMS

12-2 Programming WebLogic JMS

When a topic subscriber rolls back a received message, the message is redelivered to that
subscriber. When a queue receiver rolls back a received message, the message is redelivered to
the queue, not the consumer, so that another consumer on that queue may receive the message.

For example, when shopping online, you select items and store them in an online shopping cart.
Each ordered item is stored as part of the transaction, but your credit card is not charged until you
confirm the order by checking out. At any time, you can cancel your order and empty your cart,
rolling back all orders within the current transaction.

There are three ways to use transactions with JMS:

If you are using only JMS in your transactions, you can create a JMS transacted session.

If you are mixing other operations, such as EJB, with JMS operations, you should use a
Java Transaction API (JTA) user transaction in a non-transacted JMS session.

Use message driven beans.

To enable multiple JMS servers in the same JTA user transaction, or to combine JMS operations
with non-JMS operations (such as EJB), the two-phase commit license is required. For more
information, see “Using JTA User Transactions” on page 12-4.

The following sections explain how to use a JMS transacted session and JTA user transaction.

Note: When using transactions, it is recommended that you define a session exception listener
to handle any problems that occur before a transaction is committed or rolled back, as
described in “Defining a Session Exception Listener” on page 5-15.

If the acknowledge() method is called within a transaction, it is ignored. If the
recover() method is called within a transaction, a JMSException is thrown.

Using JMS Transacted Sessions
A JMS transacted session supports transactions that are located within the session. A JMS
transacted session’s transaction will not have any effects outside of the session. For example,
rolling back a session will roll back all sends and receives on that session, but will not roll back
any database updates. JTA user transactions are ignored by JMS transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence of a send
or receive operation, and chained together—whenever you commit or roll back a transaction,
another transaction automatically begins.

Using JMS T ransac ted Sess ions

Programming WebLogic JMS 12-3

Before using a JMS transacted session, the system administrator should adjust the connection
factory (Transaction Timeout) and/or session pool (Transaction) attributes, as necessary for the
application development environment.

The following figure illustrates the steps required to set up and use a JMS transacted session.

Figure 12-1 Setting Up and Using a JMS Transacted Session

Step 1: Set Up JMS Application, Creating Transacted Session
Set up the JMS application as described in “Setting Up a JMS Application” on page 4-2, however,
when creating sessions, as described in “Step 3: Create a Session Using the Connection” on
page 4-6, specify that the session is to be transacted by setting the transacted boolean value to
true.

For example, the following methods illustrate how to create a transacted session for the PTP and
Pub/sub messaging models, respectively:

 qsession = qcon.createQueueSession(

 true,

 Session.AUTO_ACKNOWLEDGE

);

 tsession = tcon.createTopicSession(

 true,

 Session.AUTO_ACKNOWLEDGE

);

Once defined, you can determine whether or not a session is transacted using the following
session method:

Using T ransact ions w i th WebLog ic JMS

12-4 Programming WebLogic JMS

 public boolean getTransacted(

) throws JMSException

Note: The acknowledge value is ignored for transacted sessions.

Step 2: Perform Desired Operations
Perform the desired operations assoicated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session
Once you have performed the desired operations, execute one of the following methods to
commit or roll back the transaction.

To commit the transaction, execute the following method:

 public void commit(

) throws JMSException

The commit() method commits all messages sent or received during the current transaction. Sent
messages are made visible, while received messages are removed from the messaging system.

To roll back the transaction, execute the following method:

 public void rollback(

) throws JMSException

The rollback() method cancels any messages sent during the current transaction and returns
any messages received to the messaging system.

If either the commit() or rollback() methods are issued outside of a JMS transacted session,
a IllegalStateException is thrown.

Using JTA User Transactions
The Java Transaction API (JTA) supports transactions across multiple data resources. JTA is
implemented as part of WebLogic Server and provides a standard Java interface for
implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction.UserTransaction object to begin, commit, and roll back the
transactions. When mixing JMS and EJB within a JTA user transaction, you can also start the
transaction from the EJB, as described in “Transactions in EJB Applications” in Programming
WebLogic JTA.

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs92/jta/trxejb.html

Us ing JTA User T ransact ions

Programming WebLogic JMS 12-5

You can start a JTA user transaction after a transacted session has been started; however, the JTA
transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an application to
coordinate a single JTA transaction across two or more resource managers. It guarantees data
integrity by ensuring that transactional updates are committed in all of the participating resource
managers, or are fully rolled back out of all the resource managers, reverting to the state prior to
the start of the transaction.

Note: A separate 2PC transaction license is required to support this protocol.

Before using a JTA transacted session, the system administrator must configure the connection
factories to support JTA user transactions by selecting the XA Connection Factory Enabled check
box.

The following figure illustrates the steps required to set up and use a JTA user transaction.

Figure 12-2 Setting Up and Using a JTA User Transaction

Step 1: Set Up JMS Application, Creating Non-Transacted
Session
Set up the JMS application as described in “Setting Up a JMS Application” on page 4-2, however,
when creating sessions, as described in “Step 3: Create a Session Using the Connection” on

Using T ransact ions w i th WebLog ic JMS

12-6 Programming WebLogic JMS

page 4-6, specify that the session is to be non-transacted by setting the transacted boolean
value to false.

For example, the following methods illustrate how to create a non-transacted session for the PTP
and Pub/sub messaging models, respectively.

 qsession = qcon.createQueueSession(

 false,

 Session.AUTO_ACKNOWLEDGE

);

 tsession = tcon.createTopicSession(

 false,

 Session.AUTO_ACKNOWLEDGE

);

Note: When a user transaction is active, the acknowledge mode is ignored.

Step 2: Look Up User Transaction in JNDI
The application uses JNDI to return an object reference to the UserTransaction object for the
WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context (context) and
executing the following code, for example:

UserTransaction xact = ctx.lookup(“javax.transaction.UserTransaction”);

Step 3: Start the JTA User Transaction
Start the JTA user transaction using the UserTransaction.begin() method. For example:

xact.begin();

Step 4: Perform Desired Operations
Perform the desired operations associated with the current transaction.

Step 5: Commit or Roll Back the JTA User Transaction
Once you have performed the desired operations, execute one of the following commit() or
rollback() methods on the UserTransaction object to commit or roll back the JTA user
transaction.

Asynchronous Messaging Wi th in JTA User T ransac t i ons Us ing Message Dr iven Beans

Programming WebLogic JMS 12-7

To commit the transaction, execute the following commit() method:

 xact.commit();

The commit() method causes WebLogic Server to call the Transaction Manager to complete the
transaction, and commit all operations performed during the current transaction. The Transaction
Manager is responsible for coordinating with the resource managers to update any databases.

To roll back the transaction, execute the following rollback() method:

 xact.rollback();

The rollback() method causes WebLogic Server to call the Transaction Manager to cancel the
transaction, and roll back all operations performed during the current transactions.

Once you call the commit() or rollback() method, you can optionally start another transaction
by calling xact.begin().

Asynchronous Messaging Within JTA User Transactions
Using Message Driven Beans

Because JMS cannot determine which, if any, transaction to use for an asynchronously delivered
message, JMS asynchronous message delivery is not supported within JTA user transactions.

However, message driven beans provide an alternative approach. A message driven bean can
automatically begin a user transaction just prior to message delivery.

For information on using message driven beans to simulate asynchronous message delivery, see
“Designing Message-Driven EJBs” in Programming WebLogic EJB.

Example: JMS and EJB in a JTA User Transaction
The following example shows how to set up an application for mixed EJB and JMS operations in
a JTA user transaction by looking up a javax.transaction.UserTransaction using JNDI,
and beginning and then committing a JTA user transaction. In order for this example to run, the
XA Connection Factory Enabled check box must be selected when the system administrator
configures the connection factory.

Note: In addition to this simple JTA User Transaction example, refer to the example provided
with WebLogic JTA, located in the
WL_HOME\samples\server\examples\src\examples\jta\jmsjdbc directory,
where where WL_HOME is the top-level directory of your WebLogic Platform installation.

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

Using T ransact ions w i th WebLog ic JMS

12-8 Programming WebLogic JMS

Import the appropriate packages, including the javax.transaction.UserTransaction
package.

import java.io.*;

import java.util.*;

import javax.transaction.UserTransaction;

import javax.naming.*;

import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=

"javax.transaction.UserTransaction";

.

.

.

Step 1
Set up the JMS application, creating a non-transacted session. For more information on setting
up the JMS application, refer to “Setting Up a JMS Application” on page 4-2.

//JMS application setup steps including, for example:

 qsession = qcon.createQueueSession(false,

 Session.CLIENT_ACKNOWLEDGE);

Step 2
Look up the UserTransaction using JNDI.

UserTransaction xact = (UserTransaction)

 ctx.lookup(JTA_USER_XACT);

Step 3
Start the JTA user transaction.

xact.begin();

Step 4
Perform the desired operations.

// Perform some JMS and EJB operations here.

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html

Example : JMS and E JB in a J TA Use r T ransact ion

Programming WebLogic JMS 12-9

Step 5
Commit the JTA user transaction.

xact.commit()

Using T ransact ions w i th WebLog ic JMS

12-10 Programming WebLogic JMS

Programming WebLogic JMS 13-1

C H A P T E R 13

WebLogic JMS C API

The following sections describe how to use the WebLogic JMS C API:

“What Is the WebLogic JMS C API?” on page 13-1

“System Requirements” on page 13-2

“WebLogic JMS C API Code Examples”

“Design Principles” on page 13-3

“Security Considerations” on page 13-7

“Implementation Guidelines” on page 13-7

What Is the WebLogic JMS C API?
The WebLogic JMS C API is an application program interface that enables you to create C client
applications that can access WebLogic JMS applications and resources. The C client application
then uses the Java Native Interface (JNI) to access the client-side Java JMS classes. See
Figure 13-1.

For this release, the WebLogic JMS C API adheres to the JMS Version 1.1 specification to
promote the porting of Java JMS 1.1 code. For more information, see the WebLogic JMS C API
Javadocs.

http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html
http://e-docs.bea.com/wls/docs92/javadocs/JmsCApi/index.html
http://e-docs.bea.com/wls/docs92/javadocs/JmsCApi/index.html

WebLogic JMS C AP I

13-2 Programming WebLogic JMS

Figure 13-1 WebLogic JMS C API Client Application Environment

System Requirements
The following section provides information on the system requirements needed to use the
WebLogic JMS C API in your environment:

A list of supported operating systems for the WebLogic JMS C API is located at Supported
Interoperability Tools in Supported Configurations for WebLogic Platform.

A supported JVM for your operating system. See WebLogic Platform 9.0 Supported
Configurations in Supported Configurations for WebLogic Platform.

An ANSI C compiler for your operating system.

Use one of the following WebLogic clients to connect your C client applications to your
JMS applications:

– The WebLogic application client (weblogic.jar file).

Server Process Client Process

Client JVMServer JVM

WebLogic Server WebLogic Client

JNI

Network

JMS Service

WebLogic JMS
 C API Client

http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/supp_connect.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/supp_connect.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/overview.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/overview.html

WebLog ic JMS C AP I Code Examples

Programming WebLogic JMS 13-3

– The WebLogic JMS thin client (wljmsclient.jar file). See the WebLogic JMS Thin
Client in Programming Stand-alone Clients.

WebLogic JMS C API Code Examples
BEA Systems provides samples for JMS developers that illustrate how to configure and develop
the WebLogic JMS C API clients. See http://dev2dev.bea.com/code/index.jsp.

Design Principles
The following sections discuss guiding principals for porting or developing applications for the
WebLogic JMS C API:

“Java Objects Map to Handles” on page 13-3

“Thread Utilization” on page 13-3

“Exception Handling” on page 13-4

“Type Conversions” on page 13-4

“Memory Allocation and Garbage Collection” on page 13-6

“Closing Connections” on page 13-6

“Helper Functions” on page 13-6

Java Objects Map to Handles
The WebLogic JMS C API is handle-based to promote modular code implementation. This
means that in your application, you implement Java objects as handles in C code. The details of
how a JMS object is implemented is hidden inside a handle. However, unlike in Java, when you
are done with a handle, you must explicitly free it by calling the corresponding Close or Destroy
methods. See “Memory Allocation and Garbage Collection” on page 13-6.

Thread Utilization
The handles returned from the WebLogic JMS C API are as thread safe as their Java counterparts.
For example:

javax.jms.Session objects are not thread safe, and the corresponding WebLogic JMS C
API handle, JmsSession, is not thread safe.

http://e-docs.bea.com/wls/docs92/client/jms_thin_client.html
http://e-docs.bea.com/wls/docs92/client/jms_thin_client.html
http://dev2dev.bea.com/code/index.jsp
http://e-docs.bea.com/wls/docs92/javadocs/JmsCApi/JmsConnection_8h.html#a11
http://e-docs.bea.com/wls/docs92/javadocs/JmsCApi/JmsContext_8h.html#a3

WebLogic JMS C AP I

13-4 Programming WebLogic JMS

java.jms.Connection objects are thread safe, and the corresponding WebLogic JMS C
API handle, JmsConnection, is thread safe.

As long as concurrency control is managed by the C client application, all objects returned by the
WebLogic JMS C API may be used in any thread.

Exception Handling
Note: The WebLogic JMS C API uses integer return codes.

Exceptions in the WebLogic JMS C API are local to a thread of execution. The WebLogic JMS
C API has the following exception types:

JavaThrowable represents the class java.lang.Throwable.

JavaException represents the class java.lang.Exception.

JmsException represents the class javax.jms.JMSException. All standard subclasses
of JMSException are determined by bits in the type descriptor of the exception. The type
descriptor is returned with a call to JmsGetLastException.

Type Conversions
When you interoperate between Java code and C code, typically one of the main tasks is
converting a C type to a Java type. For example, a short type is a two-byte entity in Java as well
as in C. The following type conversions that require special handling:

Integer (int)
Integer (int) converts to JMS32I (4-byte signed value).

Long (long)
Long (long) converts to JMS64I (8-byte signed value).

Character (char)
Character (char) converts to short (2-byte java character).

String
String converts to JmsString.

Des ign P r inc ip l es

Programming WebLogic JMS 13-5

Java strings are arrays of two-byte characters. In C, strings are generally arrays of one-byte
UTF-8 encoded characters. Pure ASCII strings fit into the UTF-8 specification as well. For more
information on UTF-8 string, see www.unicode.org. It is inconvenient for C programmers to
translate all strings into the two-byte Java encoding. The JmsString structure allows C clients
to use native strings or Java strings, depending on the requirements of the application.

JmsString supports two kinds of string:

Native C string (CSTRING)

JavaString (UNISTRING)

A union of the UNISTRING and CSTRING called uniOrC has a character pointer called string
that can be used for a NULL terminated UTF-8 encoded C string. The uniOrC union provides a
structure called uniString, which contains a void pointer for the string data and an integer
length (bytes).

When the stringType element of JmsString is used as input, you should set it to CSTRING or
UNISTRING, depending on the type of string input. The corresponding data field contains the
string used as input.

The UNISTRING encoding encodes every two bytes as a single Java character. The two-byte
sequence is big-endian. Unicode calls this encoding UTF-16BE (as opposed to UTF-16LE, which
is a two-byte sequence that is little-endian). The CSTRING encoding expects a UTF-8 encoded
string.

When the stringType element of JmsString is used as output, the caller has the option to let
the API allocate enough space for output using malloc, or you can supply the space and have the
system copy the returned string into the provided bytes. If the appropriate field in the union
(either string or data) is NULL, then the API allocates enough space for the output using malloc.
It is the callers responsibility to free this allocated space using free when the memory is no
longer in use. If the appropriate field in the union (string or data) is not NULL, then the
allocatedSize field of JmsString must contain the number of bytes available to be written.

If there is not enough space in the string to contain the entire output, then allocatedSize sets
to the amount of space needed and the API called returns JMS_NEED_SPACE. The appropriate field
in the JmsString (either string or data) contains as much data as could be stored up to the
allocatedSize bytes. In this case, the NULL character may or may not have been written at the
end of the C string data returned. Example:

To allocate one hundred bytes for the string output from a text message, you would set the
data pointer and the allocatedSize field to one hundred. The
JmsMessageGetTextMessage API returns JMS_NEED_SPACE with allocatedSize set to

http://www.unicode.org

WebLogic JMS C AP I

13-6 Programming WebLogic JMS

two hundred. Call realloc on the original string to reset the data pointer and call the
function again. Now the call succeeds and you are able to extract the string from the
message handle. Alternatively, you can free the original buffer and allocate a new buffer of
the correct size.

Memory Allocation and Garbage Collection
All resources that you allocate must also be disposed of it properly. In Java, garbage collection
cleans up all objects that are no longer referenced. However, in C, all objects must be explicitly
cleaned up. All WebLogic JMS C API handles given to the user must be explicitly destroyed.
Notice that some handles have a verb that ends in Close while others end in Destroy. This
convention distinguishes between Java objects that have a close method and those that do not.
Example:

The javax.jms.Session object has a close method so the WebLogic JMS C API has a
JmsSessionClose function.

The javax.jms.ConnectionFactory object does not have a close method so the
WebLogic JMS C API has a JmsConnectionFactoryDestroy function.

Note: A handle that has been closed or destroyed should never be referenced again.

Closing Connections
In Java JMS, closing a connection implicitly closes all subordinate sessions, producers, and
consumers. In the WebLogic JMS C API, closing a connection does not close any subordinate
sessions, producers, or consumers. After a connection is closed, all subordinate handles are no
longer available and need to be explicitly closed.

Helper Functions
The WebLogic JMS C API provides some helper functions that do not exist in WebLogic JMS.
These helpers are explained fully in the WebLogic JMS C API. For example:

JmsMessageGetSubclass operates on a JmsMessage handle and returns an integer
corresponding to the subclass of the message. In JMS, this could be accomplished using
instanceof.

http://e-docs.bea.com/wls/docs92/javadocs/JmsCApi/index.html
http://e-docs.bea.com/wls/docs92/javadocs/JmsCApi/JmsMessage_8h.html#a13

Secur i t y Cons ide rat ions

Programming WebLogic JMS 13-7

Security Considerations
The WebLogic JMS C API supports WebLogic compatibility realm security mode based on a
username and password. The username and password must be passed to the initial context in
the SECURITY_PRINCIPAL and SECURITY_CREDENTIALS fields of the hash table used to create
the InitialContext object.

Implementation Guidelines
Be aware of the following when you implement the WebLogic JMS C API:

It does not support WebLogic Server JMS extensions, including XML messages.

It does not support JMS Object messages.

It creates an error log if an error is detected in the client. This error log is named
ULOG.mmddyy (month/day/year). This log file is fully internationalized using the NLSPATH,
LOCALE, and LANG environment variables of the client.

Users who want to translate the message catalog can use the gencat utility provided on
Windows or the gencat utility of the host platform. If the generated catalog file is placed
according to the NLSPATH, LOCALE, and LANG variables, then the translated catalog will be
used when writing messages to the log file.

You can set the following environment variables in the client environment:

– JMSDEBUG— Provides verbose debugging output from the client.

– JMSJVMOPTS—Provides extra arguments to the JVM loaded by the client.

– ULOGPFX— Configures the pathname and file prefix where the error log file is placed.

WebLogic JMS C AP I

13-8 Programming WebLogic JMS

Programming WebLogic JMS 14-1

C H A P T E R 14

Recovering from a Server Failure

These sections discuss how WebLogic JMS client applications reconnect or recover from a
server/network failure, and how to migrate JMS data after a server failure.

“Automatic JMS Client Failover” on page 14-2

“Programming Considerations for WebLogic Server 9.0 or Earlier Failures” on page 14-16

“Migrating JMS Data to a New Server” on page 14-16

Recover ing f rom a Serve r Fa i lu re

14-2 Programming WebLogic JMS

Automatic JMS Client Failover
With the automatic JMS client reconnect feature, if a server or network failure occurs, some JMS
client objects will transparently failover to use a another server instance, as long as one is
available. For example, if a fatal server failure occurs, JMS clients automatically attempt to
reconnect to the server when it becomes available.

A network connection failure could be due to transient reasons (a temporary blip in the network
connection) or non-transient reasons (a server bounce or network failure). In such cases, some
JMS client objects will attempt to automatically operate with another server instance in a cluster,
or possibly with the host server.

By default, JMS producer session objects automatically attempt to reconnect to an available
server instance without any manual configuration or modifications to existing client code. If you
do not want your JMS producers to be automatically reconnected, then you must explicitly
disable this feature either programmatically or administratively.

In addition, JMS consumer session objects can also be configured to automatically attempt to
reconnect to an available server, but due to their potentially asynchronous nature, you must
explicitly enable this capability using the Administration Console or public WebLogic JMS APIs.

For more information, refer to the following sections:

“Automatic Failover for JMS Producers” on page 14-3

“Configuring Automatic Failover for JMS Consumers” on page 14-7

“Explicitly Disabling Automatic Failover on JMS Clients” on page 14-13

“Limitations for Automatic JMS Client Failover” on page 14-14

 “Best Practices for JMS Clients Using Automatic Failover” on page 14-14

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-3

Automatic Failover for JMS Producers
In most cases, JMS producer applications will transparently failover to another server instance if
one is available. The following WebLogic JMS producer-oriented objects will attempt to
automatically reconnect to an available sever instance without any manual configuration or
modification to existing client code:

Connection

Session

MessageProducer

 If you do not want your JMS clients to be automatically reconnected, then you must explicitly
disable this feature either programatically or administratively, as described in “Explicitly
Disabling Automatic Failover on JMS Clients” on page 14-13.

Sample Producer Code
In the event of a network failure, the WebLogic JMS client code for message production will
attempt to reconnect to an available server during Steps 3-8 shown in Listing 14-1.

Listing 14-1 Sample JMS Client Code for Message Production

0. Context ctx = create WebLogic JNDI context with credentials etc.

1. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)

2. Destination dest = ctx.lookup(JNDI name of destination)

 // the following operations recover from network failures

3. Connection con = cf.createConnection()

4. Session sess = con.createSession(no transactions, ack mode)

5. MessageProducer prod = sess.createProducer(dest)

6. Loop over:

7. Message msg = sess.createMessage()

8. prod.send(msg)

9. con.close(); ctx.close()

Recover ing f rom a Serve r Fa i lu re

14-4 Programming WebLogic JMS

The JMS producer will transparently failover to another server instance, if one is available. This
keeps the client code as simple as listed above and eliminates the need for client code for retrying
across network failures.

The WebLogic JMS does not reconnect MessageConsumers by default. For this to automatically
occur programmatically, your client application code must call the WebLogic WLConnection
extension, with the setReconnectPolicy set to “all”, as explained in “Configuring Automatic
Failover for JMS Consumers” on page 14-7.

Re-usable ConnectionFactory Objects
Since Weblogic Server 8.1, a ConnectionFactory object looked up via JNDI (see Step 1 in
Listing 14-1 and Listing 14-2) is re-usable after a server or network failure without requiring a
re-lookup. A network failure could be between the JMS client JVM and the remote WebLogic
Server instance it is connected to as part of the JNDI lookup, or between the JMS client JVM and
any remote WebLogic Server instance in the same cluster where the JMS client subsequently
connects.

Re-usable Destination Objects
A Destination object (queue or topic) looked up via JNDI (see Step 2 in Listing 14-1 and
Listing 14-2) is re-usable after a server or network failure without requiring another lookup. The
same principle applies to producers that send to a distributed destinations, since the client looks
up the distributed destination in JNDI, and not the unavailable distributed member.

A network failure could be between the client JVM and the WebLogic Server instance it is
connected to, or between that WebLogic Server instance and the WebLogic Server instance that
actually hosts the destination. The Destination object will also be robust after restarting the
WebLogic Server instance hosting the destination.

Note: For information on how consumers of distributed destinations behave with automatic
JMS client reconnect, see “Consumers of Distributed Destinations” on page 14-11.

Reconnected Connection Objects
The JMS Connection object is used to map one-to-one to a physical network connection between
the client JVM and a remote WebLogic Server instance. With the JMS client reconnect feature,
the JMS Connection object that the client gets from the
ConnectionFactory.createConnection() method (see Step 3 in Listing 14-1 and
Listing 14-2) maps in a one-to-one-at-a-time fashion to the physical network connection. One

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-5

consequence is that while the JMS client continues to use the same Connection object, it could
be actually communicating with a different WebLogic Server instance after an implicit failover.

If there is a network disconnect and a subsequent implicit refresh of the connection, all objects
derived from the connection (such as javax.jms.Session and javax.jms.MessageProducer
objects) are also implicitly refreshed. During the refresh, any synchronous operation on the
connection or its derived objects that go to the server (such as producer.send() or
connection.createSession()), may block for a period of time before giving up on the
connection refresh. This time is configured using the Administration Console or the
setReconnectBlockingMillis(long) API in the
weblogic.jms.extension.WLConnection interface.

The reconnect feature keeps trying to reconnect to the Weblogic Server instance’s
ConnectionFactory object in the background until the application calls connection.close().
The ReconnectBlockingMillis parameter is the time-out for a synchronous caller trying to use
the connection when the connection in being retried in the background.

If a synchronous call does time out without seeing a refreshed connection, it then behaves in
exactly the same way (that is, throws the same Exceptions) as without the implicit reconnect (that
is, it will behave as if it was called on a stale connection without the reconnect feature).

The caller can then decide to simply retry the synchronous call (with a potentially lower quality
of service, like duplicate messages), or decide to call connection.close(), which will
terminate the background retries for that connection.

Special Cases for Reconnected Connections
There are special cases that can occur when producer connections are refreshed:

Connections with a ClientID for Durable Subscribers – If your Reconnect Policy field is
set to None or Producer, and a JMS Connection has a Client ID specified at the time of a
network/server failure, then the Connection will not be automatically refreshed. The reason
for this restriction is backward compatibility, which avoids breaking existing JMS
applications that try to re-create a JMS Connection with the same connection name after a
failure. If implicit failover also occurs on a network failure, then the application’s creation
of the connection will fail due to a duplicate ClientID.

Note: For information on how a consumer connection with a ClientID behaves, see
“Consumer Connections with a ClientID for Durable Subscriptions” on page 14-11.

Closed Objects Are Not Refreshed – When the application calls
javax.jms.Connection.close(), javax.jms.Session.close(), etc., that object and

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLConnection.html

Recover ing f rom a Serve r Fa i lu re

14-6 Programming WebLogic JMS

it descendents are not refreshed. Similarly, when the JMS client is told its Connection has
been administratively destroyed, it is not refreshed.

Connection with Registered Exception Listener – If the JMS Connection has an application
ExceptionListener registered on it, that ExceptionListener’s onException() callback will
be invoked even if the connection is implicitly refreshed. This notifies the application code
of the network disconnect event. The JMS client application code might normally call
connection.close() in onException; however, if it wants to take advantage of the
reconnect feature, it may choose not to call connection.close(). The registered
ExceptionListener is also migrated transparently to the internally refreshed connection to
listen for exceptions on the refreshed connection.

Multiple Connections – If there are multiple JMS Connections created off the same
ConnectionFactory object, each connection will behave independently of the other
connections as far as the reconnect feature is concerned. Each connection will have its own
connection status, its own connection retry machinery, etc.

Reconnected Session Objects
As described in “Reconnected Connection Objects” on page 14-4, JMS Session objects are
refreshed when their associated JMS connection gets refreshed (see Step 4 in Listing 14-1 and
Listing 14-2). Session states, such as acknowledge mode and transaction mode, are preserved
across each refresh occurrence. The same session object can be used for calls, like
createMessageProducer(), after a refresh.

Special Cases for Reconnected Sessions
These sections discuss special cases that can occur when Sessions are reconnected.

Transacted Sessions With Pending Commits or Rollbacks – Similar to non-transacted JMS
Sessions, transacted JMS sessions are automatically refreshed. However, if there were send
or receive operations on a Session pending a commit or rollback at the time of the network
disconnect, then the first commit call after the Session refresh will fail throwing a
javax.jms.TransactionRolledBackException. When a JMS Session transaction
spans a network refresh, the commit for that transaction cannot vouch for the operations
done prior to the refresh as part of that transaction (from an application code perspective).

After a Session refresh, operations like send() or receive() will not throw an exception;
it is only the first commit after a refresh that will throw an exception. However, the first
commit after a Session refresh will not throw an exception if there were no pending
transactional operations in that JMS session at the time of the network disconnect. In case
of Session.commit() throwing the exception, the client application code can simply retry

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-7

all the operations in the transaction again with the same (implicitly refreshed) JMS objects.
The stale operations before a refresh will not be committed and will not be duplicated.

Pending Unacknowledged Messages – If a Session had unacknowledged messages prior to
the Session refresh, then the first WLSession.acknowledge() call after a refresh throws a
weblogic.jms.common.LostServerException. This indicates that the acknowledge()
call may not have removed messages from the server. As a result, the refreshed Session
may receive duplicate messages that were also delivered before the disconnect.

Reconnected MessageProducer Objects
As described in “Reconnected Connection Objects” on page 14-4, JMS MessageProducer objects
are refreshed when their associated JMS connection gets refreshed (see Step 5 in Listing 14-1).
If producers are non-anonymous, that is, they are specific to a Destination object (standalone or
distributed destination), then the producer’s destination is also implicitly refreshed, as described
in “Re-usable Destination Objects” on page 14-4. If a producer is anonymous, that is not specific
to a Destination object, then the possibly-stale Destination object specified on the producer’s
send() operation is implicitly refreshed.

Special Case for Reconnected MessageProducers and Distributed Destinations
It is possible that a producer can send a message at the same time that a distributed destination
member becomes unavailable. If WebLogic JMS can determine that the distributed destination
member is not available, or was not available when the message was sent, the system will retry
sending the message to another distributed member. If there is no way to determine if the message
made it through the connection all the way to the distributed member before it went down, the
system will not attempt to resend the message because doing so may create a duplicate message.
In that case, WebLogic JMS will throw an exception. It is up to the application to catch that
exception and decide whether or not to resend the message.

Configuring Automatic Failover for JMS Consumers
JMS MessageConsumer objects that are part of a JMS Connection (via a JMS Session) can be
refreshed during a JMS Connection refresh (see Step 5 in Listing 14-2). However, due to the
stateful nature of JMS Consumers, as well as their potential asynchronous nature, you must
explicitly enable this capability using either the weblogic.jms.extension.WLConnection
API or the Administration Console.

Explicitly enabling automatic refresh of consumers also refreshes Connections with a configured
Client ID for a durable subscriber, as described in “Consumer Connections with a ClientID for
Durable Subscriptions” on page 14-11. However, refreshed consumers does not include

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLSession.html#acknowledge()
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLConnection.html

Recover ing f rom a Serve r Fa i lu re

14-8 Programming WebLogic JMS

QueueBrowser clients, which are never refreshed, as described in “Limitations for Automatic
JMS Client Failover” on page 14-14.

Sample Consumer Client Code
When Message Consumer refresh is explicitly activated, in the event of a network failure, the
WebLogic JMS client code for message consumption will attempt to reconnect during Steps 3-8
in Listing 14-2.

Listing 14-2 Sample JMS Client Code for Message Consumption

0. Context ctx = create WebLogic JNDI context with credentials etc.

1. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)

2. Destination dest = ctx.lookup(JNDI name of destination)

 // the following operations recover from network failures

3. Connection con = cf.createConnection()

 (weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("all")

4. Session sess = con.createSession(no transactions, auto ack)

5. MessageConsumer cons = sess.createConsumer(dest, message selector)

 - also for async consumers : cons.setMessageListener(onMessage impl)

6. con.start()

7. Loop over:

 for sync consumers: Message msg = consumer.receive()

 for async consumers (in different thread): onMessage() invoked

8. con.close(), ctx.close()

Note that the connection factory does not refresh MessageConsumer objects by default. For this
to occur programmatically, your client application code must call the WebLogic WLConnection
extension, with the setReconnectPolicy set to “all”, as shown in Step 3 in Listing 14-2.

Configuring Automatic Client Refresh Options
The JMS client reconnect API includes the following configuration parameters, which allow you
to make some choices that affect the behavior of the reconnect feature for consumers.

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-9

For instructions on configuring client parameters on a connection factory using the
Administration Console, see “Configure connection factory client parameters” in the
Administration Console Online Help. For more information about these parameters, see
ClientParamsBean in the WebLogic Server MBean Reference.

Common Cases for Reconnected Consumers
This section describes the common scenarios when refreshing synchronous and asynchronous
consumers.

Synchronous Consumers
Synchronous consumers use MessageConsumer.receive(),
MessageConsumer.receive(timeout), and MessageConsume.receiveNoWait() methods
to consume messages. The first two methods are already expected to be potentially block the
application code, while the third method is not expected to block the application code. To retain

Table 14-1 Automatic JMS Client Reconnect Options

Console Label/MBean Attribute Value Description

Reconnect Policy
ReconnectPolicy

• None
• Producer

(default)
• All

Determines which JMS client objects are implicitly
refreshed upon a network disconnect or server reboot. It only
affects the implicit refresh of Connections, Sessions,
Producers, and Consumers derived from this Connection
Factory. This attribute does not affect Destination or
ConnectionFactory objects in the JMS client, since those
objects are always refreshed implicitly. Nor does it affect the
QueueBrowser object in the JMS client, since that object is
never refreshed.

Reconnect Blocking Time
ReconnectBlockingTimeM
illis

6000 Determines how long any synchronous JMS calls, such as
producer.send(), consumer.receive(), and
session.createBrowser() will block the calling
thread before giving up on a JMS client reconnect in
progress.

TotalReconnectPeriodMi
llis

-1 Determines how long JMS clients should keep retrying to
connect after either the initial network disconnect or the last
synchronous JMS call attempt (whichever occurs most
recently), before giving up retrying.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureClientParams.html
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/ClientParamsBean.html

Recover ing f rom a Serve r Fa i lu re

14-10 Programming WebLogic JMS

these semantics, the following rules describe interaction of the reconnect feature with the
synchronous consumer calls:

MessageConsumer.receive()– If there is a network disconnect during this call, this
method can block for up to Reconnect Blocking Time property (described in the
configuration section) for a reconnect to go through before throwing an Exception.

MessageConsumer.receive(timeout) – This call will block for the at-most timeout
milliseconds specified by caller. If the Reconnect Blocking Time property is less than
timeout, the receive will still block up to the Reconnect Blocking Time setting; if the
Reconnect Blocking Time value is more than timeout, the receive will only block up to
timeout.

MessageConsumer.receiveNoWait() – This call will not block if the JMS Connection is
in the process of reconnecting. The Reconnect Blocking Time value will have no effect on
this call.

If these methods eventually reach their respective timeout/wait periods, they all will throw the
same Exceptions. as without reconnect. If a reconnect succeeds while these methods are
blocked/called, these methods will continue returning messages, but with a potentially lowered
quality-of-service and with generally similar semantics of receiving messages (like Redelivered
messages), as after a recover. The application is notified of this possibility by a Connection
ExceptionListener callback with LostServerException. In addition, for non-AUTO_ACK
acknowledge modes, the first acknowledge call after a refresh will throw a
LostServerException to notify the application of this possibility.

Asynchronous Consumers
In the context of a reconnect, the behavior for asynchronous consumers will be governed by the
setting on the Total Reconnect Period property. The JMS Consumer’s registered message
listener’s onMessage() will continue to be invoked if the reconnect framework is able to
successfully re-establish a connection within the Total Reconnect Period setting after a
connection failure. If the user explicitly calls a close() on the JMS Connection (or on the JMS
Session corresponding to the asynchronous Consumer), then the reconnect framework will not
invoke any further onMessages for that Consumer. The onMessage() should expect
post-recover behavior (like Redelivered messages) if the Connection ExceptionListener’s
onException is invoked with a LostServerException.

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-11

Special Cases for Reconnected Consumers
These sections discuss special cases that can occur when consumers are refreshed.

Consumers of Distributed Destinations
Previous to release 9.2, consumers of distributed destinations (DDs) were pinned to a particular
destination member of the DD for the life of the pinned consumer. This applies to queue
consumers of distributed queues, and non-durable subscribers of distributed topics (durable
subscribers are not supported distributed topics).

With MessageConsumer reconnect, DD consumers are also refreshed; however, the refreshed
consumer is almost never on the same destination member as the stale consumer. Therefore, even
though the application is using the same DD consumer across a refresh, it is effectively not pinned
to the same destination member across a refresh.

Message-Driven EJBs
Message-driven EJBs (MDBs) are a special sub-case of asynchronous consumers that have their
own behavior requirements and their own refresh framework. As such, MDBs are not expected
to participate in MessageConsumer refreshes, and are not expected to be affected in any other
way by the JMS client reconnect framework.

Consumer Connections with a ClientID for Durable Subscriptions
Durable subscriptions on standalone topics will not notice any difference due to the client
reconnect feature if the topic is still available across a disconnect. The JMS client reconnect
framework implicitly refreshes the durable subscriber on that topic and continue from where it
was interrupted. Note that if your Reconnect Policy is set to All, JMS Connections with a
ClientID will also refresh automatically, thus allowing durable subscriptions (which are scoped
by ClientID) to refresh automatically. Connections with a ClientID set will not reconnect for any
other Reconnect Policy setting.

Notes: If a JMS Connection has a ClientID specified at the time of a network/server failure, then
reconnecting that client make take significantly longer than your other clients. For
example, in a cluster the JMS server must wait for the WebLogic Server “heartbeat”
notification that is broadcast from other members of the cluster, as explained in “Failover
and Replication in a Cluster” in Using WebLogic Server Clusters.

WebLogic JMS does not support durable subscriptions on distributed topics, so there is
no issue of failover to another distributed topic member during a refresh.

http://e-docs.bea.com/wls/docs92/cluster/failover.html
http://e-docs.bea.com/wls/docs92/cluster/failover.html

Recover ing f rom a Serve r Fa i lu re

14-12 Programming WebLogic JMS

Non-Durable Subscriptions and Possible Missed Messages
For consumers that are non-durable subscribers of topics, though the consumption apparently
continues successfully across a refresh from an application perspective, it is possible for
messages to have been published to the topic and dropped (e.g., for lack of consumers) while the
reconnect was happening. Such missed messages can occur with either synchronous or
asynchronous non-durable subscribers.

Duplicate Messages
Due to the nature of the consumer refresh feature, there is a possibility of redelivered messages
without the client application code calling recover explicitly because a consumer refresh
effectively does an implicit equivalent of a recover upon a refresh. This is the main reason why
implicit Consumer refresh is not on by default. The semantics of never redelivering a successfully
acknowledged message still hold true.

There is also an unlikely case when non-durable subscribers of distributed topics can receive
duplicate messages that are not marked redelivered (e.g., when failover happens faster than
messages are discarded in topics). This is a consequence of a non-durable subscriber refresh for
the distributed topic not being pinned to a topic member across a refresh.

Variations Due to Acknowledge Modes
There will be no difference in the reconnect behaviors of Consumers due to different
acknowledge modes. However, the first acknowledge call after a refresh for non-AUTO_ACK
modes will throw a LostServerException as described earlier to notify user of potential lowered
quality of service.

Consumers May Not Reconnect with Migrated JMS Destinations In a Cluster
Consumers will not always reconnect after a JMS server (and its destinations) is migrated to
another server in a cluster. If consumers do not get migrated with the destinations, either an
exception is thrown or onException will occur to inform the application that the consumer is no
longer valid. As a workaround, an application can refresh the consumer either in the exception
handler or through onException.

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-13

Explicitly Disabling Automatic Failover on JMS Clients
If you do not want your JMS clients to be automatically reconnected, then you must explicitly
disable this feature either programatically or administratively.

Programmatically
If you do not want your JMS clients to be automatically reconnected, then your applications
should call the following code:

 ConnectionFactory cf = (javax.jms.ConnectionFactory)ctx.lookup

 (JNDI name of connection factory)

 javax.jms.Connection con = cf.createConnection();

 ((weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("none")

For more information about the setReconnectPolicy method, refer to the
weblogic.jms.extension.WLConnection API.

Administratively
Administrators that do not want JMS clients to automatically reconnect should use the following
steps to disable the Reconnect Policy on the JMS connection factory:

1. Follow the directions for navigating to the JMS Connection Factory: Configuration: Client
pages, see Configure connection factory client parameters in the Administration Console
Online Help.

2. In the Reconnect Policy field, select None to disable the JMS client reconnect feature on this
connection factory.

For more information about the Reconnect Policy field, see JMS Connection Factory:
Configuration: Client in the Administration Console Online Help.

3. Click Save.

For more information about the other JMS connection factory client parameters, see
ClientParamsBean in the WebLogic Server MBean Reference.

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/WLConnection.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureClientParams.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigclientparamstitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigclientparamstitle.html
http://e-docs.bea.com/wls/docs92/wlsmbeanref/mbeans/ClientParamsBean.html

Recover ing f rom a Serve r Fa i lu re

14-14 Programming WebLogic JMS

Limitations for Automatic JMS Client Failover
Implicit failover of the following JMS objects is not supported WebLogic Server 9.2:

Queue browsers: javax.jms.QueueBrowser

The WebLogic JMS thin client (wljmsclient.jar) will not automatically reconnect. For more
information, see “WebLogic JMS Thin Client” in Programming Stand-alone Clients.

Client statistics are reset on each reconnect, which results in the loss historical data for the
client.

Temporary destinations (javax.jms.TemporaryQueue and
javax.jms.TemporaryTopic).

Tip: Temporary destinations may still be accessible after a sever/network failure. This is
because temporary destinations are not always on the same server instance as the
local connection factory due to server load balancing. Therefore, if a temporary
destination survives a server/network failure and a producer continues sending
messages to it, an auto-reconnected consumer may or may not be able consume
messages from the same temporary destination it was connected to before the failure
occurred.

Best Practices for JMS Clients Using Automatic Failover
BEA recommends the following best practices for JMS clients when using the Automatic JMS
Client Reconnect feature:

Use Transactions to Group Message Work
Use transacted sessions (JMS) or user transactions (JTA) to group related or dependent work,
including messaging work, so that either all of the work is completed or none of it is. If a server
instance goes down and a message is lost in the middle of a transaction, the entire transaction is
rolled back and the application does not need to make a decision for each message after a failure.

Tip: Be aware of transaction commit failures after a server reconnect, which may occur if the
transaction subsystem cannot reach all the participants involved in the transaction.

http://e-docs.bea.com/wls/docs92/client/jms_thin_client.html

Automat ic JMS C l i ent Fa i l ove r

Programming WebLogic JMS 14-15

JMS Clients Should Always Call the close() Method
As a best practice, your applications should not rely on the JVM’s garbage collection to clean up
JMS connections because the JMS automatic reconnect feature keeps a reference to the JMS
connection. Therefore, always use connection.close() to clean up your connections. Also
consider using a Finally block to ensure that your connection resources are cleaned up.
Otherwise, WebLogic Server allocates system resources to keep the connection available.

For more information closing JMS client connections, see “Best Practice: Always Close Failed
JMS ClientIDs” on page 5-24.

Recover ing f rom a Serve r Fa i lu re

14-16 Programming WebLogic JMS

Programming Considerations for WebLogic Server 9.0 or
Earlier Failures

JMS client applications running on Weblogic Server 9.0 or earlier had to reestablish javax.jms
objects after a server failure. If you are still running release 9.0 or earlier JMS clients, you may
want to program your JMS clients to terminate gracefully in the event of a server failure. For
example:

Migrating JMS Data to a New Server
WebLogic JMS uses the migration framework implemented in the WebLogic Server core, which
allows WebLogic JMS respond properly to migration requests and bring a WebLogic JMS server
online and offline in an orderly fashion. This includes both scheduled migrations as well as
migrations in response to a WebLogic Server failure.

Once properly configured, a JMS server and all of its destinations can migrate to another
WebLogic Server within a cluster.

You can recover JMS data from a failed WebLogic Server by starting a new server and doing one
or more of the tasks in Table 14-3.

Note: There are special considerations when you migrate a service from a server instance that
has crashed or is unavailable to the Administration Server. If the Administration Server
cannot reach the previously active host of the service at the time you perform the
migration, see “Migrating a Service When Currently Active Host is Unavailable” in
Using WebLogic Server Clusters.

Table 14-2 Programming Considerations for Server Failures

If a WebLogic Server Instance Fails
and...

Then...

You are connected to the failed
WebLogic Server instance

A JMSException is delivered to the connection exception listener.
You must restart the application once the server is restarted or replaced.

A JMS Server is targeted on the failed
WebLogic Server instance

A ConsumerClosedException is delivered to the session
exception listener. You must re-establish any message consumers that
have been lost.

http://e-docs.bea.com/wls/docs92/cluster/failover.html#SpecialMigrationProcedure

Migrat ing JMS Data to a New Serve r

Programming WebLogic JMS 14-17

Note: JMS persistent stores can increase the amount of memory required during initialization
of WebLogic Server as the number of stored messages increases. When rebooting
WebLogic Server, if initialization fails due to insufficient memory, increase the heap size
of the Java Virtual Machine (JVM) proportionally to the number of messages that are
currently stored in the JMS persistent store and try the reboot again.

For information about starting a new WebLogic Server, see the “Starting and Stopping Servers:
Quick Reference”. For information about recovering a failed server, refer to Avoiding and
Recovering From Server Failure in Managing Server Startup and Shutdown.

For more information about defining migratable services, see “Service Migration” in Using
WebLogic Server Clusters.

Table 14-3 Migration Task Guide

If Your JMS Application Uses. . . Perform the Following Task. . .

Persistent messaging—JDBC Store • If the JDBC database store physically exists on the failed server,
migrate the database to a new server and ensure that the JDBC
connection pool URL attribute reflects the appropriate location
reference.

• If the JDBC database does not physically exist on the failed server,
access to the database has not been impacted, and no changes are
required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the pathname within the
WebLogic Server home directory is the same as it was on the original
server.

Transactions To facilitate recovery after a crash, WebLogic Server provides the
Transaction Recovery Service, which automatically attempts to recover
transactions on system startup. The Transaction Recovery Service
owns the transaction log for a server.

For detailed instructions on recovering transactions from a failed
server, see “Transaction Recovery After a Server Fails” in
Programming WebLogic JTA.

http://e-docs.bea.com/wls/docs92/jta/trxman.html#jtatrb013
http://e-docs.bea.com/wls/docs92/server_start/startquickref.html
http://e-docs.bea.com/wls/docs92/server_start/startquickref.html
http://e-docs.bea.com/wls/docs92/server_start/failures.html
http://e-docs.bea.com/wls/docs92/server_start/failures.html
http://e-docs.bea.com/wls/docs92/cluster/failover.html#service_migration

Recover ing f rom a Serve r Fa i lu re

14-18 Programming WebLogic JMS

Programming WebLogic JMS A-1

A P P E N D I X A

Deprecated WebLogic JMS Features

The following sections describe features that have been deprecated for this release of WebLogic
Server :

“Defining Server Session Pools” on page A-1

Defining Server Session Pools
Note: Session pools are now used rarely, as they are not a required part of the J2EE

specification, do not support JTA user transactions, and are largely superseded by
message-driven beans (MDBs), which are simpler, easier to manage, and more capable.
For more information on designing MDBs, see “Designing and Developing
Message-Driven Beans” in Programming WebLogic Enterprise JavaBeans.

WebLogic JMS implements an optional JMS facility for defining a server-managed pool of
server sessions. This facility enables an application to process messages concurrently.

The server session pool:

Receives messages from a destination and passes them to a server-side message listener
that you provide to process messages. The message listener class provides an
onMessage() method that processes a message.

Processes messages in parallel by managing a pool of JMS sessions, each of which
executes a single-threaded onMessage() method.

The following figure illustrates the server session pool facility, and the relationship between the
application and the application server components.

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html
http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

Deprecated WebLogic JMS Features

A-2 Programming WebLogic JMS

Figure 14-1 Server Session Pool Facility

As illustrated in the figure, the application provides a single-threaded message listener. The
connection consumer, implemented by JMS on the application server, performs the following
tasks to process one or more messages:

1. Gets a server session from the server session pool.

2. Gets the server session’s session.

3. Loads the session with one or more messages.

4. Starts the server session to consume messages.

5. Releases the server session back to pool when finished processing messages.

The following figure illustrates the steps required to prepare for concurrent message processing.

Def in ing Server Sess ion Poo ls

Programming WebLogic JMS A-3

Figure 14-2 Preparing for Concurrent Message Processing

Applications can use other application server providers’ session pool implementations within this
flow. Server session pools can also be implemented using message-driven beans. For information
on using message driven beans to implement server session pools, see “Designing
Message-Driven Beans” in Programming WebLogic Enterprise JavaBeans.

If the session pool and connection consumer were defined during configuration, you can skip this
section. For more information on configuring server session pools and connection consumers, see
“Configuring JMS System Resources” in Configuring and Managing WebLogic JMS.

Currently, WebLogic JMS does not support the optional
TopicConnection.createDurableConnectionConsumer() operation. For more information
on this advanced JMS operation, refer to Sun Microsystems’ JMS Specification.

Step 1: Look Up Server Session Pool Factory in JNDI
You use a server session pool factory to create a server session pool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, where <name>
specifies the name of the JMS server to which the session pool is created.

Once it has been configured, you can look up a server session pool factory by first establishing a
JNDI context (context) using the NamingManager.InitialContext() method. For any
application other than a servlet application, you must pass an environment used to create the
initial context. For more information, see the NamingManager.InitialContext() Javadoc.

Once the context is defined, to look up a server session pool factory in JNDI use the following
code:

factory = (ServerSessionPoolFactory) context.lookup(<ssp_name>);

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html
http://e-docs.bea.com/wls/docs92/ejb/message_beans.html
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#jms_sessionpool_config
http://www.javasoft.com/products/jms/docs.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/InitialContext.html#InitialContext()

Deprecated WebLogic JMS Features

A-4 Programming WebLogic JMS

The <ssp_name> specifies a qualified or non-qualified server session pool factory name.

For more information about server session pool factories, see “ServerSessionPoolFactory” on
page 2-27 or the weblogic.jms.extensions.ServerSessionPoolFactory Javadoc.

Step 2: Create a Server Session Pool Using the Server
Session Pool Factory
You can create a server session pool for use by queue (PTP) or topic (Pub/Sub) connection
consumers, using the ServerSessionPoolFactory methods described in the following
sections.

For more information about server session pools, see “ServerSessionPool” on page 2-28 or the
javax.jms.ServerSessionPool Javadoc.

Create a Server Session Pool for Queue Connection Consumers
The ServerSessionPoolFactory provides the following method for creating a server session
pool for queue connection consumers:

public ServerSessionPool getServerSessionPool(

 QueueConnection connection,

 int maxSessions,

 boolean transacted,

 int ackMode,

 String listenerClassName

) throws JMSException

You must specify the queue connection associated with the server session pool, the maximum
number of concurrent sessions that can be retrieved by the connection consumer (to be created in
step 3), whether or not the sessions are transacted, the acknowledge mode (applicable for
non-transacted sessions only), and the message listener class that is instantiated and used to
receive and process messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For more information
about the ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Create a Server Session Pool for Topic Connection Consumers
The ServerSessionPoolFactory provides the following method for creating a server session
pool for topic connection consumers:

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ServerSessionPool.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Def in ing Server Sess ion Poo ls

Programming WebLogic JMS A-5

public ServerSessionPool getServerSessionPool(

 TopicConnection connection,

 int maxSessions,

 boolean transacted,

 int ackMode,

 String listenerClassName

) throws JMSException

You must specify the topic connection associated with the server session pool, the maximum
number of concurrent sessions that can be retrieved by the connection (to be created in step 3),
whether or not the sessions are transacted, the acknowledge mode (applicable for non-transacted
sessions only), and the message listener class that is instantiated and used to receive and process
messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For more information
about the ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Step 3: Create a Connection Consumer
You can create a connection consumer for retrieving server sessions and processing messages
concurrently using one of the following methods:

Configuring the server session pool and connection consumer during the configuration, as
described in “Configuring JMS System Resources” in Configuring and Managing
WebLogic JMS

Including in your application the Connection methods described in the following sections

For more information about the ConnectionConsumer class, see “ConnectionConsumer” on
page 2-28 or the javax.jms.ConnectionConsumer Javadoc.

Create a Connection Consumer for Queues
The QueueConnection provides the following method for creating connection consumers for
queues:

public ConnectionConsumer createConnectionConsumer(

 Queue queue,

 String messageSelector,

 ServerSessionPool sessionPool,

http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html
http://e-docs.bea.com/wls/docs92/jms_admin/basic_config.html#jms_sessionpool_config
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Deprecated WebLogic JMS Features

A-6 Programming WebLogic JMS

 int maxMessages

) throws JMSException

You must specify the name of the associated queue, the message selector for filtering messages,
the associated server session pool for accessing server sessions, and the maximum number of
messages that can be assigned to the server session simultaneously. For information about
message selectors, see “Filtering Messages” on page 5-34.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the
ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Create a Connection Consumer for Topics
The TopicConnection provides the following two methods for creating
ConnectionConsumers for topics:

public ConnectionConsumer createConnectionConsumer(

 Topic topic,

 String messageSelector,

 ServerSessionPool sessionPool,

 int maxMessages

) throws JMSException

public ConnectionConsumer createDurableConnectionConsumer(

 Topic topic,

 String messageSelector,

 ServerSessionPool sessionPool,

 int maxMessages

) throws JMSException

For each method, you must specify the name of the associated topic, the message selector for
filtering messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session simultaneously. For
information about message selectors, see “Filtering Messages” on page 5-34.

Each method creates a connection consumer; but, the second method also creates a durable
connection consumer for use with durable subscribers. For more information about durable
subscribers, see “Setting Up Durable Subscriptions” on page 5-21.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the
ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Def in ing Server Sess ion Poo ls

Programming WebLogic JMS A-7

Example: Setting Up a PTP Client Server Session Pool
The following example illustrates how to set up a server session pool for a JMS client. The
startup() method is similar to the init() method in the examples.jms.queue.QueueSend
example, as described in “Example: Setting Up a PTP Application” on page 4-14. This method
also sets up the server session pool.

The following illustrates the startup() method, with comments highlighting each setup step.

Include the following package on the import list to implement a server session pool application:

import weblogic.jms.extensions.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session pool.

private final static String SESSION_POOL_FACTORY=

"weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private QueueConnectionFactory qconFactory;

private QueueConnection qcon;

private QueueSession qsession;

private QueueSender qsender;

private Queue queue;

private ServerSessionPoolFactory sessionPoolFactory;

private ServerSessionPool sessionPool;

private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(

 String name,

 Hashtable args

) throws Exception

{

 String connectionFactory = (String)args.get("connectionFactory");

 String queueName = (String)args.get("queue");

 if (connectionFactory == null || queueName == null) {

 throw new

IllegalArgumentException("connectionFactory="+connectionFactory+

 ", queueName="+queueName);

 }

Deprecated WebLogic JMS Features

A-8 Programming WebLogic JMS

 Context ctx = new InitialContext();

 qconFactory = (QueueConnectionFactory)

ctx.lookup(connectionFactory);

 qcon =qconFactory.createQueueConnection();

 qsession = qcon.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

 queue = (Queue) ctx.lookup(queueName);

 qcon.start();

Step 1
Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)

 ctx.lookup(SESSION_POOL_FACTORY);

Step 2
Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(qcon, 5,

 false, Session.AUTO_ACKNOWLEDGE,

 examples.jms.startup.MsgListener);

The code defines the following:

qcon as the queue connection associated with the server session pool

5 as the maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3)

Sessions will be non-transacted (false)

AUTO_ACKNOWLEDGE as the acknowledge mode

The examples.jms.startup.MsgListener will be used as the message listener that is
instantiated and used to receive and process messages concurrently.

Step 3
Create a connection consumer, as follows:

 consumer = qcon.createConnectionConsumer(queue, “TRUE”,

sessionPool, 10);

The code defines the following:

Def in ing Server Sess ion Poo ls

Programming WebLogic JMS A-9

queue as the associated queue

TRUE as the message selector for filtering messages

sessionPool as the associated server session pool for accessing server sessions

10 as the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-9 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Client Server Session Pool
The following example illustrates how to set up a server session pool for a JMS client. The
startup() method is similar to the init() method in the examples.jms.topic.TopicSend
example, as described in “Example: Setting Up a Pub/Sub Application” on page 4-17. It also sets
up the server session pool.

The following illustrates startup() method, with comments highlighting each setup step.

Include the following package on the import list to implement a server session pool application:

import weblogic.jms.extensions.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session pool.

private final static String SESSION_POOL_FACTORY=

"weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private TopicConnectionFactory tconFactory;

private TopicConnection tcon;

private TopicSession tsession;

private TopicSender tsender;

private Topic topic;

private ServerSessionPoolFactory sessionPoolFactory;

private ServerSessionPool sessionPool;

private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(

 String name,

http://www.java.sun.com/products/jms/docs.html

Deprecated WebLogic JMS Features

A-10 Programming WebLogic JMS

 Hashtable args

) throws Exception

{

 String connectionFactory = (String)args.get("connectionFactory");

 String topicName = (String)args.get("topic");

 if (connectionFactory == null || topicName == null) {

 throw new

IllegalArgumentException("connectionFactory="+connectionFactory+

 ", topicName="+topicName);

 }

 Context ctx = new InitialContext();

 tconFactory = (TopicConnectionFactory)

ctx.lookup(connectionFactory);

 tcon = tconFactory.createTopicConnection();

 tsession = tcon.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

 topic = (Topic) ctx.lookup(topicName);

 tcon.start();

Step 1
Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)

 ctx.lookup(SESSION_POOL_FACTORY);

Step 2
Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(tcon, 5,

 false, Session.AUTO_ACKNOWLEDGE,

 examples.jms.startup.MsgListener);

The code defines the following:

tcon as the topic connection associated with the server session pool

5 as the maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3)

Sessions will be non-transacted (false)

Def in ing Server Sess ion Poo ls

Programming WebLogic JMS A-11

AUTO_ACKNOWLEDGE as the acknowledge mode

The examples.jms.startup.MsgListener will be used as the message listener that is
instantiated and used to receive and process messages concurrently.

Step 3
Create a connection consumer, as follows:

 consumer = tcon.createConnectionConsumer(topic, “TRUE”,

sessionPool, 10);

The code defines the following:

topic as the associated topic

TRUE as the message selector for filtering messages

sessionPool as the associated server session pool for accessing server sessions

10 as the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-9 or the javax.jms Javadoc.

http://www.java.sun.com/products/jms/docs.html

Deprecated WebLogic JMS Features

A-12 Programming WebLogic JMS

Programming WebLogic JMS B-1

A P P E N D I X B

FAQs: Integrating Remote JMS
Providers

The J2EE standards for JMS (messaging), JTA (transaction), and JNDI (naming) work together
to provide reliable java-to-java messaging between different host machines and even different
vendors. BEA WebLogic Server provides a variety of tools that leverage these APIs to aid
integrating remote JMS providers into a local application.

The following sections provide information on how to integrate WebLogic Server with remote
JMS providers.

“Understanding JMS and JNDI Terminology” on page B-2

“Understanding Transactions” on page B-3

“How to Integrate with a Remote Provider” on page B-5

“Best Practices when Integrating with Remote Providers” on page B-7

“Using Foreign JMS Server Definitions” on page B-8

“Using EJB/Servlet JMS Resource References” on page B-9

Using WebLogic Store-and-Forward

Using a Messaging Bridge

Using Messaging Beans

JMS Interoperability Resources

FAQs : In tegrat ing Remote JMS P rov ide rs

B-2 Programming WebLogic JMS

Understanding JMS and JNDI Terminology
Q. What is a remote JMS provider?

A. A remote JMS provider is a JMS server that is hosted outside a local stand-alone WebLogic
server or outside WebLogic server cluster. The remote JMS server may be a WebLogic or a
non-WebLogic (foreign) JMS server.

Q. What is JNDI?

A. JNDI (Java Naming and Directory Interface) is a J2EE lookup service that maps names to
services and resources. JNDI provides a directory of advertised resources that exist on a particular
stand-alone (unclustered) WebLogic server, or within a WebLogic server cluster. Examples of
such resources include JMS connection factories, JMS destinations, JDBC (database) data
sources, and application EJBs.

A client connecting to any WebLogic server in a WebLogic cluster can transparently reference
any JNDI advertised service or resource hosted on any WebLogic server within the cluster. The
client doesn't require explicit knowledge of which particular WebLogic server in the cluster hosts
a desired resource.

Q. What is a JMS connection factory?

A. A JMS connection factory is a named entity resource stored in JNDI. Applications, message
driven beans (MDBs), and messaging bridges lookup a JMS connection factory in JNDI and use
it to create JMS connections. JMS connections are used in turn to create JMS sessions, producers,
and consumers that can send or receive messages.

Q. What is a JMS connection-id?

A. JMS connection-ids are used to name JMS client connections. Durable subscribers require
named connections, otherwise connections are typically unnamed. Note that within a clustered
set of servers or stand-alone server, only one JMS client connection may use a particular named
connection at a time. An attempt to create new connection with the same name as an existing
connection will fail.

Q. What is the difference between a JMS topic and a JMS queue?

A. JMS queues deliver a message to one consumer, while JMS topics deliver a copy of each
message to each consumer.

Q. What is a topic subscription?

A. A topic subscription can be thought of as an internal queue of messages waiting to be delivered
to a particular subscriber. This internal queue accumulates copies of each message published to

Unders tand ing T ransact ions

Programming WebLogic JMS B-3

the topic after the subscription was created. Conversely, it does not accumulate messages that
were sent before the subscription was created. Subscriptions are not sharable, only one subscriber
may subscribe to a particular subscription at a time.

Q. What is a non-durable topic subscriber?

A. A non-durable subscriber creates unnamed subscriptions that exist only for the life of the JMS
client. Messages in a non-durable subscription are never persisted—even when the message's
publisher specifies a persistent quality of service (QOS). Shutting down a JMS server terminates
all non-durable subscriptions.

Q. What is a durable subscriber?

A. A durable subscriber creates named subscriptions that continue to exist even after the durable
subscriber exits or the server reboots. A durable subscriber connects to its subscription by
specifying topic-name, connection-id, and subscriber-id. Together, the connection-id and
subscriber-id uniquely name the subscriber’s subscription within a cluster. A copy of each
persistent message published to a topic is persisted to each of the topic's durable subscriptions. In
the event of a server crash and restart, durable subscriptions and their unconsumed persistent
messages are recovered.

Understanding Transactions
Q. What is a transaction?

A. A transaction is a set of distinct application operations that must be treated as an atomic unit.
To maintain consistency, all operations in a transaction must either all succeed or all fail. See
Introducing Transactions in Programming WebLogic JTA.

Q. Why are transactions important for integration?

A. Integration applications often use transactions to assure data consistency. For example, to
assure that a message is forwarded exactly-once, a single transaction is often used to encompass
the two operations of receiving the message from its source destination and sending to the target
destination. Transactions are also often used to ensure atomicity of updating a database and
performing a messaging operation.

Q. What is a JTA/XA/global transaction?

A. In J2EE, the terms JTA transaction, XA transaction, user transaction, and global transaction
are often used interchangeably to refer to a single global transaction. Such a transaction may
include operations on multiple different XA capable resources and even different resource types.
A JTA transaction is always associated with the current thread, and may be passed from server to

http://e-docs.bea.com/wls/docs92/jta/gstrx.html

FAQs : In tegrat ing Remote JMS P rov ide rs

B-4 Programming WebLogic JMS

server as one application calls another. A common example of an XA transaction is one that
includes both a WebLogic JMS operation and a JDBC (database) operation.

Q. What is a local transaction?

A. A JMS local transaction is a transacion in which only a single resource or service may
participate. A JMS local transaction is associated with a particular JMS session where the
destinations of a single vendor participate. Unlike XA transactions, a database operation can not
participate in a JMS local transaction.

Q. How does JMS provide local transactions?

A. Local transactions are enabled by a JMS specific API called transacted sessions. For
vendors other than WebLogic JMS, the scope of a transacted session is typically limited to a
single JMS server. In WebLogic JMS, multiple JMS operations on multiple destinations within
an entire cluster can participate in a single transacted session's transaction. In other words, it is
scoped to a WebLogic cluster and no remote JMS provider to the JMS session's cluster can
participate in a transaction.

Q. Are JMS local transactions useful for integration purposes?

A. Local transactions are generally not useful for integration purposes as they are limited in scope
to a single resource, typically a messaging or database server.

Q. What is Automatic Transaction Enlistment?

A. Operations on resources such as database servers or messaging servers participate in a J2EE
JTA transaction provided that:

the resource is XA transaction capable

the resource has been enlisted with the current transaction

the client library used to access the resource is transaction aware (XA enabled).

Automatic participation of operations on an XA capable resource in a transaction is technically
referred to as automatic enlistment.

WebLogic clients using XA enabled WebLogic APIs automatically enlist operation in the
current thread's JTA transaction. Examples of XA enabled WebLogic clients include
WebLogic JMS XA enabled (or user transaction enabled) connection factories, and JDBC
connection pool data sources that are global transaction enabled.

Foreign (non-WebLogic) JMS clients do not automatically enlist in the current JTA
transaction. Such clients must either go through an extra step of programmatically enlisting

How to In tegrate w i th a Remote Prov ider

Programming WebLogic JMS B-5

in the current transaction, or use WebLogic provided features that wrap the foreign JMS
client and automatically enlist when the foreign JMS client is accessed via wrapper APIs.

JMS features that provide automatic enlistment for foreign vendors are:

Message-Driven EJBs

JMS resource-reference pools

Messaging Bridges

To determine if a non-WebLogic vendor's JMS connection factory is XA capable, check the
vendor documentation. Remember, support for transacted sessions (local transactions) does not
imply support for global/XA transactions.

How to Integrate with a Remote Provider
Q. What does a JMS client do to communicate with a remote JMS provider?

A. To communicate with any JMS provider, a JMS client must perform the following steps:

1. Look up a JMS connection factory object and a JMS destination object using JNDI

2. Create a JMS connection using the connection factory object

3. Create message consumers or producers using the JMS connection and JMS destination
objects.

Q. What information do I need to set up communications with a remote JMS provider?

A. You will need the following information to set up communications with a remote JMS
provider:

The destination type—whether the remote JMS destination is a queue or a topic.

The JNDI name of the remote JMS destination.

For durable topic subscribers—the connection-id and subscriber-id names that uniquely
identify them. Message Driven EJBs provide default values for these values based on the
EJB name.

For non-WebLogic remote JMS providers

– Initial Context Factory Class Name— the java class name of the remote JMS Provider's
JNDI lookup service.

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html
http://e-docs.bea.com/wls/docs92/jms/j2ee_components.html#1027018
http://e-docs.bea.com/wls/docs92/ConsoleHelp/messaging_bridge.html

FAQs : In tegrat ing Remote JMS P rov ide rs

B-6 Programming WebLogic JMS

– The file location of the java jars containing the remote JMS provider's JMS client and
JNDI client libraries. Ensure that these jars are specified in the local JVM's classpath.

The URL of the remote provider's JNDI service. For WebLogic servers, the URL is
normally in the form t3://hostaddress:port. If you are tunneling over HTTP, begin
the URL with http rather than t3. No URL is required for server application code that
accesses a WebLogic JMS server that resides on the same WebLogic server or WebLogic
cluster as the application.

The JNDI name of the remote provider's JMS connection factory. This connection factory
must exist on the remote provider, not the local provider.

If the JMS application requires transactions, the connection factory must be XA capable.
WebLogic documentation refers to XA capable factories as user transactions enabled.

By default, WebLogic servers automatically provide three non-configurable connection
factories:

– weblogic.jms.ConnectionFactory—a non-XA capable factory.

– weblogic.jms.XAConnectionFactory—an XA-capable factory

– weblogic.jms.MessageDrivenBeanConnectionFactory—an XA-capable factory
for message driven EJBs.

Additional WebLogic JMS connection factories must be explicitly configured.

Q. What if a foreign JMS provider JNDI service has limited functionality?

A. The preferred method for locating JMS provider connection factories and destinations is to use
a standard J2EE JNDI lookup. Occasionally a non-WebLogic JMS provider's JNDI service is
hard to use or unreliable. The solution is to create a startup class or load-on-start servlet that runs
on a WebLogic server that does the following:

– Uses the foreign provider's proprietary (non-JNDI) APIs to locate connection factories
and JMS destinations.

– Registers the JMS destinations and JMS connection factories in WebLogic JNDI.

For sample code, see Creating Foreign JNDI Objects in a Startup Class in Using Foreign
JMS Providers with WebLogic Server on Dev2Dev.

Q. How can I pool JMS resources?

A. Remote and local JMS resources, such as client connections and sessions, are often pooled to
improve performance. Message driven EJBs automatically pool their internal JMS consumers.
JMS consumers and producers accessed through resource-references are also automatically

http://dev2dev.bea.com/pub/a/2004/01/jmsproviders.html
http://dev2dev.bea.com/pub/a/2004/01/jmsproviders.html
http://dev2dev.bea.com/

Best P rac t i ces when In tegrat ing w i th Remote P rov ide rs

Programming WebLogic JMS B-7

pooled. For more information on resource pooling, including information on writing a custom
pool, see the BEA WebLogic JMS Performance Guide on Dev2Dev..

Q. What version interoperability does WebLogic provide?

A. All WebLogic server releases 6.1 and higher interoperate freely between releases. For
example, a WebLogic 8.1 JMS client can send messages directly to a 6.1 JMS server and vice
versa. A Messaging Bridge can be used to forward WebLogic 5.1 JMS messages to and from
WebLogic server releases 6.1 and higher.

Q. What tools are available for integrating with remote JMS providers?

A. The following table summarizes the tools available for integrating with remote JMS providers:

Best Practices when Integrating with Remote Providers
Q. How do I receive messages from a remote a JMS provider from within an EJB or Servlet?

A. Use a message driven EJB. Synchronous receives are not recommended because they idle a
server side thread while the receiver blocks waiting for a message. See Q. What is a Message
Driven EJB (MDB)? and Q. When should I use a MDB?

Q. How do I send messages to a remote JMS provider from within an EJB or Servlet?

A. Use a resource reference. It provides pooling and automatic enlistment. See Q. What are JMS
resource references? and Q. What advantages do JMS resource references provide? In limited

Method Automatic Enlistment JMS Resource Pooling

Direct use of the remote
provider’s JMS client

Yes for a WebLogic server
provider. Other providers
must perform enlistment
programmatically.

No. Can be done
programmatically.

Messaging Bridge Yes N/A

Foreign JMS Server
Definition

No. To get automatic
enlistment, use in conjuction
with a JMS resource
reference or MDB.

No. To get resource pooling, use
in conjunction with a JMS
resource reference or MDB.

JMS Resource Reference Yes Yes

Message Driven EJBs Yes Yes

http://dev2dev.bea.com/pub/a/2004/01/WL_JMS_Perform_GD.html
http://dev2dev.bea.com/

FAQs : In tegrat ing Remote JMS P rov ide rs

B-8 Programming WebLogic JMS

cases where wrappers are not sufficient, you can write your own pooling code. See the BEA
WebLogic JMS Performance Guide on Dev2Dev.

If the target destination is remote, consider adding a local destination and messaging bridge to
implement a store-and-forward high availability design. See Q. What is a messaging bridge? and
Q. When should I use a messaging bridge?.

Another best practice is to use foreign JMS server definitions. Foreign JMS server definitions
allow an application's JMS resources to be administratively changed and avoid the problem of
hard-coding URLs into application code. In addition, foreign JMS server definitions are required
to enable resource references to reference remote JMS providers. See Q. What are Foreign JMS
Server Definitions? and Q. When is it best to use a Foreign JMS Server Definition?.

Q. How do I communicate with remote JMS providers from a client?

A. If the destination is not provided by WebLogic Server, and there is a need to include operations
on the destination in a global transaction, use a server proxy to encapsulate JMS operations on
the foreign vendor in an EJB. Applications running on WebLogic server have facilities to enlist
non-WebLogic JMS providers that are transaction (XA) capable with the current transaction. See
Q. How do I receive messages from a remote a JMS provider from within an EJB or Servlet? and
Q. How do I send messages to a remote JMS provider from within an EJB or Servlet?.

If you need store-and-forward capability, consider sending to local destinations and using
messaging bridges to forward the message to the foreign destination. See Q. What is a messaging
bridge? and Q. When should I use a messaging bridge?.

Another option is to simply use the remote vendor’s JNDI and JMS API directly or configuring
foreign JMS providers to avoid hard-coding references to them. You will need to add the foreign
provider's class libraries to the client's class-path.

Q. How can I tune WebLogic JMS interoperability features?

A. See Tuning WebLogic Server EJBs, Tuning WebLogic Message Bridge, and Tuning
WebLogic JMS Store-and-Forward in WebLogic Server Performance and Tuning.

Using Foreign JMS Server Definitions
Q. What are Foreign JMS Server Definitions?

A. Foreign JMS server definitions are an administratively configured symbolic link between a
JNDI object in a remote JNDI directory, such as a JMS connection factory or destination object,
and a JNDI name in the JNDI name space for a stand-alone WebLogic Server or a WebLogic
cluster. They can be configured using the Administration console, standard JMX MBean APIs,

http://dev2dev.bea.com/pub/a/2004/01/WL_JMS_Perform_GD.html
http://dev2dev.bea.com/pub/a/2004/01/WL_JMS_Perform_GD.html
http://dev2dev.bea.com/
http://e-docs.bea.com/wls/docs92docs90/perform/EJBTuning.html
http://e-docs.bea.com/wls/docs92/perform/bridgetuning.html
http://e-docs.bea.com/wls/docs92/perform/saftune.html
http://e-docs.bea.com/wls/docs92/perform/saftune.html

Using E JB/Serv le t JMS Resource Refe rences

Programming WebLogic JMS B-9

or programmatically using scripting. See Simple Access to Remote or Foreign JMS Providers in
the Administration Console Online Help.

Q. When is it best to use a Foreign JMS Server Definition?

A. For this release, a Foreign JMS Server definition conveniently moves JMS JNDI parameters
into one central place. You can share one definition between EJBs, servlets, and messaging
bridges. You can change a definition without recompiling or changing deployment descriptors.
They are especially useful for:

Any message driven EJB (MDB) where it is desirable to administer standard JMS
communication properties via configuration rather than hard code them into the
application's EJB deployment descriptors. This applies even if the MDB's source
destination isn't remote.

Any MDB that has a destination remote to the cluster. This simplifies deployment
descriptor configuration and enhances administrative control.

Any EJB or servlet that sends or receives from a remote destination.

Enabling resource references to refer to remote JMS providers. See Q. What are JMS
resource references? and Q. How do I use resource references with non-transactional
messaging?.

Using EJB/Servlet JMS Resource References
Q. What are JMS resource references?

A. Resource references are specified by servlet and EJB application developers and packaged
with an application. They are easy-to-use and provide a level of indirection that lets applications
reference JNDI names defined in an EJB descriptor rather than hard-coding JNDI names directly
into application source code.

JMS resource-references provide two additional features:

Automatic pooling of JMS resources when those resources are closed by the application.

Automatic enlistment of JMS resources with the current transaction, even for
non-WebLogic JMS providers.

Inside an EJB or a servlet application code, use JMS resource references by including
resource-ref elements in the deployment descriptors and then use JNDI a context to look them up
using the syntax java:comp/env/jms/<reference name>.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/jms_config.html#1121453

FAQs : In tegrat ing Remote JMS P rov ide rs

B-10 Programming WebLogic JMS

Resource references provide no functionality outside of application code, and therefore are not
useful for configuring a message driven EJB’s source destination or a messaging bridge's source
or target destinations.

For WebLogic documentation on JMS resource-reference pooling, see Using JMS with EJBs and
Servlets in Programming WebLogic JMS.

Q. What advantages do JMS resource references provide?

A. JMS resource references provide the following advantages:

They ensure portability of servlet and EJB applications: they can be used to change an
application's JMS resource without recompiling the application's source code.

They provide automatic pooling of JMS Connection, Session, and MessageProducer
objects.

They provide automatic transaction enlistment for non-WebLogic JMS providers. This
requires XA support in the JMS provider. If resource references aren't used, then enlisting a
non-WebLogic JMS provider with the current transaction requires extra programmatic
steps.

Q. How do I use resource references with foreign JMS providers?

A. To enable resource references to reference remote JMS providers, they must be used in
conjunction with a foreign JMS definition. This is because resources references do not provide a
place to specify a URL or initial context factory. See Q. What are Foreign JMS Server
Definitions?.

Q. How do I use resource references with non-transactional messaging?

A. For non-transactional cases, do not use a global transaction (XA) capable connection factory.
This will impact messaging performance. If you do, the resource reference will automatically
begin and commit an internal transaction for each messaging operation. See Q. What is a
transaction?.

Using WebLogic Store-and-Forward
Q. What is the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service enables WebLogic Server to deliver
messages reliably between applications that are distributed across WebLogic Server instances.
For example, with the SAF service, an application that runs on or connects to a local WebLogic
Server instance can reliably send messages to a destination that resides on a remote server. If the

http://e-docs.bea.com/wls/docs92/jms/j2ee_components.html
http://e-docs.bea.com/wls/docs92/jms/j2ee_components.html

Using a Messag ing Br idge

Programming WebLogic JMS B-11

destination is not available at the moment the messages are sent, either because of network
problems or system failures, then the messages are saved on a local server instance, and are
forwarded to the remote destination once it becomes available. See Understanding the
Store-and-Forward Service in Configuring and Managing WebLogic Store-and-Forward.

Q. When should I use the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service should be used when forwarding JMS
messages between WebLogic Server 9.0 or later domains. The SAF service can deliver messages:

 Between two stand-alone server instances.

Between server instances in a cluster.

Across two clusters in a domain.

Across separate domains.

Q. When can’t I use WebLogic Store-and-Forward?

A. You can’t use the WebLogic Store-and-Forward service in the following situations:

Receiving from a remote destination—use a message driven EJB or implement a client
consumer directly.

Sending messages to a local destination—send directly to the local destination.

Forwarding messages to prior releases of WebLogic Server. See Q. What is a messaging
bridge?.

Interoperating with third-party JMS products (for example, MQSeries). See Q. What is a
messaging bridge?.

When using temporary destinations with the JMSReplyTo field to return a response to a
request.

Using a Messaging Bridge
Q. What is a messaging bridge?

A. Messaging bridges are administratively configured services that run on a WebLogic server.
They automatically forward messages from a configured source JMS destination to a configured
target JMS destination. These destinations can be on different servers than the bridge and can
even be foreign (non-WebLogic) destinations. Each bridge destination is configured using the
four common properties of a remote provider:

http://e-docs.bea.com/wls/docs92/saf_admin/overview.html
http://e-docs.bea.com/wls/docs92/saf_admin/overview.html

FAQs : In tegrat ing Remote JMS P rov ide rs

B-12 Programming WebLogic JMS

The initial context factory.

The connection URL.

The connection factory JNDI name.

The destination JNDI name.

Messaging bridges can be configured to use transactions to ensure exactly-once message
forwarding from any XA capable (global transaction capable) JMS provider to another.

Q. When should I use a messaging bridge?

A. Typically, messaging bridges are used to provide store-and-forward high availability design
requirements. A messaging bridge is configured to consume from a sender's local destination and
forward it to the sender's actual target remote destination. This provides high availability because
the sender is still able to send messages to its local destination even when the target remote
destination is unreachable. When a remote destination is not reachable, the local destination
automatically begins to store messages until the bridge is able to forward them to the target
destination when the target becomes available again.

Q. When should I avoid using a messaging bridge?

A. Other methods are preferred in the following situations:

Receiving from a remote destination—use a message driven EJB or implement a client
consumer directly.

Sending messages to a local destination—send directly to the local destination.

Environment with low tolerance for message latency. Messaging Bridges increase latency
and may lower throughput. Messaging bridges increase latency for messages as they
introduce an extra destination in the message path and may lower throughput because they
forward messages using a single thread.

Forward messages between WebLogic 9.0 domains—Use WebLogic Store-and-Forward.
See Q. What is the WebLogic Store-and-Forward Service?.

Using Messaging Beans
Q. What is a Message Driven EJB (MDB)?

A. Message Driven EJBs are EJB containers that internally use standard JMS APIs to
asynchronously receive messages from local, remote, or even foreign JMS destinations and then
call application code to process the messages. MDBs have the following characteristics:

Using Messaging Beans

Programming WebLogic JMS B-13

Automatically connects to a source destination and automatically retries connecting if the
remote destination is inaccessible.

Support automatic enlistment of the received messages in container managed transactions,
even when the JMS provider is not WebLogic.

Automatically pool their internal JMS connections, sessions, and consumers.

A MDB's source destination, URL, and connection factory are configured in the EJB and
WebLogic descriptors which are packaged as part of an application.

The messaging processing application logic is contained in a single method callback
onMessage().

AMDB is a full-fledged EJB that supports transactions, security, JDBC, and other typical
EJB actions.

For more information, see Message-Driven EJBs in Programming WebLogic Enterprise
JavaBeans.

Q. When should I use a MDB?

A. MDBs are the preferred mechanism for WebLogic server applications that receive and process
JMS messages.

Q. Do I need to use a Messaging Bridge with a MDB?

A. Configure MDBs to directly consume from their source destination rather than insert a
messaging bridge between them. MDBs automatically retry connecting to their source
destination if the source destination is inaccessible, so there is no need to insert a messaging
bridge in the message path to provide higher availability. Introducing a messaging bridge may
have a performance impact. See Q. When should I avoid using a messaging bridge?.

Q. What is the best way to configure a MDB?

A. The following section provides tips for configuring a MDB:

To configure MDB concurrency and thread pools, use the max-beans-in-free-pool and
dispatch-policy descriptor fields. WebLogic may create fewer concurrent instances than
max-beans-in-free-pool depending on the number of available server threads in the
MDB's thread pool.

Use foreign JMS server definitions when configuring a MDB to consume from a remote
JMS provider. Although WebLogic MDB descriptors can be configured to directly refer to
remote destinations, this information is packaged with the application and is not
dynamically editable. You should configure a foreign JMS server definition and then

http://e-docs.bea.com/wls/docs92/ejb/message_beans.html

FAQs : In tegrat ing Remote JMS P rov ide rs

B-14 Programming WebLogic JMS

configure the MDB to reference the foreign definition instead. Please note that some
documentation refers to foreign JMS server definitions as wrappers. See Q. What are
Foreign JMS Server Definitions?.

Use care when configuring a MDB for container managed transactions. A MDB supports
container managed XA transactions when a MDB’s descriptor files have
transaction-type of Container and a trans-attribute of Required and the JMS
connection factory is XA enabled. Failure to follow these steps will result in the MDB
being non-transactional. The default WebLogic setting for a MDB connection factory is
XA enabled. The MDB automatically begins a transaction and automatically enlists the
received message in the transaction.

JMS Interoperability Resources
Q. What additional resources document JMS interoperability?

A. For general information on WebLogic JMS see the Messaging topic page and featured JMS
articles at http://dev2dev.bea.com/jms/.

http://e-docs.bea.com/wls/docs92/messaging.html
http://dev2dev.bea.com/jms/

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials for the JMS Developer
	Avitek Medical Records Application (MedRec) and Tutorials
	JMS Examples in the WebLogic Server Distribution

	New and Changed JMS Features In This Release

	Understanding WebLogic JMS
	Overview of the Java Message Service and WebLogic JMS
	What Is the Java Message Service?
	Implementation of Java Specifications
	J2EE Specification
	JMS Specification

	WebLogic JMS Architecture
	Major Components

	Understanding the Messaging Models
	Point-to-Point Messaging
	Publish/Subscribe Messaging
	Message Persistence

	Value-Added Public JMS API Extensions
	WebLogic Server Value-Added JMS Features

	Understanding the JMS API
	ConnectionFactory
	Using the Default Connection Factories
	Configuring and Deploying Connection Factories
	The ConnectionFactory Class

	Connection
	Session
	WebLogic JMS Session Guidelines
	Session Subclasses
	Non-Transacted Session
	Transacted Session

	Destination
	Distributed Destinations

	MessageProducer and MessageConsumer
	Message
	Message Header Fields
	Message Property Fields
	Message Body

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	Best Practices for Application Design
	Message Design
	Serializing Application Objects
	Serializing strings
	Server-side serialization
	Selection

	Message Compression
	Message Properties and Message Header Fields
	Message Ordering
	Topics vs. Queues
	Asynchronous vs. Synchronous Consumers
	Persistent vs. Non-Persistent Messages
	Deferring Acknowledges and Commits
	Using AUTO_ACK for Non-Durable Subscribers
	Alternative Qualities of Service, Multicast and No-Acknowledge
	Using MULTICAST_NO_ACKNOWLEDGE
	Using NO_ACKNOWLEDGE

	Avoid Multi-threading

	Developing a Basic JMS Application
	Importing Required Packages
	Setting Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Create a Queue Connection
	Create a Topic Connection

	Step 3: Create a Session Using the Connection
	Create a Queue Session
	Create a Topic Session

	Step 4: Look Up a Destination (Queue or Topic)
	Using a JNDI Name
	Use a Reference

	Step 5: Create Message Producers and Message Consumers Using the Session and Destinations
	Create QueueSenders and QueueReceivers
	Create TopicPublishers and TopicSubscribers

	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
	Step 7: Start the Connection
	Example: Setting Up a PTP Application
	Example: Setting Up a Pub/Sub Application

	Sending Messages
	Create a Message Object
	Define a Message
	Send the Message to a Destination
	Send a Message Using Queue Sender
	Send a Message Using TopicPublisher

	Setting Message Producer Attributes
	Example: Sending Messages Within a PTP Application
	Example: Sending Messages Within a Pub/Sub Application

	Receiving Messages
	Receiving Messages Asynchronously
	Asynchronous Message Pipeline

	Receiving Messages Synchronously
	Using the Prefetch Mode to Create a Synchronous Message Pipeline
	Example: Receiving Messages Synchronously Within a PTP Application
	Example: Receiving Messages Synchronously Within a Pub/Sub Application

	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources

	Managing Your Applications
	Managing Rolled Back, Recovered, Redelivered, or Expired Messages
	Setting a Redelivery Delay for Messages
	Setting a Redelivery Delay
	Overriding the Redelivery Delay on a Destination

	Setting a Redelivery Limit for Messages
	Configuring a Message Redelivery Limit On a Destination
	Configuring an Error Destination for Undelivered Messages

	Ordered Redelivery of Messages
	Required Message Pipeline Setting for the Messaging Bridge and MDBs
	Performance Limitations

	Handling Expired Messages

	Setting Message Delivery Times
	Setting a Delivery Time on Producers
	Setting a Delivery Time on Messages
	Overriding a Delivery Time
	Interaction With the Time-to-Live Value
	Setting a Relative Time-to-Deliver Override
	Setting a Scheduled Time-to-Deliver Override
	JMS Schedule Interface

	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Metadata
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Managing Destinations
	Dynamically Creating Destinations
	Dynamically Deleting Destinations
	Preconditions for Deleting Destinations
	What Happens when a Destination is Deleted
	Message Timestamps for Troubleshooting Deleted Destinations
	Deleted Destination Statistics

	Using Temporary Destinations
	Creating a Temporary Queue
	Creating a Temporary Topic
	Deleting a Temporary Destination

	Setting Up Durable Subscriptions
	Defining the Persistent Store
	Defining the Client ID
	Creating Subscribers for a Durable Subscription
	Best Practice: Always Close Failed JMS ClientIDs
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions
	Managing Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors
	Indexing Topic Subscriber Message Selectors To Optimize Performance

	Sending XML Messages
	WebLogic XML APIs
	Using a String Representation
	Using a DOM Representation

	Using JMS Module Helper to Manage Applications
	Configuring JMS System Resources Using JMSModuleHelper
	Configuring JMS Servers and Store-and-Forward Agents
	JMSModuleHelper Sample Code
	Creating a JMS System Resource
	Deleting a JMS System Resource

	Best Practices when Using JMSModuleHelper

	Using Multicasting with WebLogic Server
	Benefits of using Multicasting
	Limitations of using Multicasting
	Configuring Multicasting for WebLogic Server
	Prerequisites for Multicasting
	Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Dynamically Configuring Multicasting Configuration Attributes
	Example: Multicast TTL

	Using Distributed Destinations
	What is a Distributed Destination?
	Why Use a Distributed Destination
	Creating a Distributed Destination
	Types of Distributed Destinations
	Uniform Distributed Destinations
	Weighted Distributed Destinations

	Using Distributed Destinations
	Using Distributed Queues
	Queue Forwarding
	QueueSenders
	QueueReceivers
	QueueBrowsers

	Using Distributed Topics
	TopicPublishers
	TopicSubscribers
	Deploying Message-Driven Beans on a Distributed Topic

	Accessing Distributed Destination Members
	Accessing Uniform Destination Members
	Accessing Weighted Destination Members

	Distributed Destination Failover

	Using Message-Driven Beans with Distributed Destinations
	Common Use Cases for Distributed Destinations
	Maximizing Production
	Maximizing Availability
	Using Queues
	Using Topics

	Stuck Messages

	Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets
	Enabling WebLogic JMS Wrappers
	Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
	Declaring a Wrapped JMS Connection Factory
	Declaring JMS Destinations
	Sending a JMS Message In a J2EE Container

	What’s Happening Under the JMS Wrapper Covers
	Automatically Enlisting Transactions
	Container-Managed Security
	Connection Testing
	J2EE Compliance
	Pooled JMS Connection Objects
	Monitoring Pooled Connections

	Improving Performance Through Pooling
	Speeding Up JNDI Lookups by Pooling Session Objects
	Speeding Up Object Creation Through Caching
	Enlisting the Proper Transaction Mode

	Examples of JMS Wrapper Functions
	ejb-jar.xml
	weblogic-ejb-jar.xml
	PoolTest.java
	PoolTestHome.java
	PoolTestBean.java

	Simplified Access to Remote or Foreign JMS Providers

	Using Message Unit-of-Order
	What Is Message Unit-Of-Order?
	Understanding Message Processing with Unit-of-Order
	Message Processing According to the JMS Specification
	Message Processing with Unit-of-Order
	Message Delivery with Unit-of-Order

	Message Unit-of-Order Case Study
	Joe Orders a Book
	What Happened to Joe’s Order
	How Message Unit-of-Order Solves the Problem

	How to Create a Unit-of-Order
	Creating a Unit-of-Order Programmatically
	Creating a Unit-of-Order Administratively
	Configuring Unit-of-Order for a Connection Factory and Destinations

	Unit-of-Order Naming Rules

	Message Unit-of-Order Advanced Topics
	What Happens When a Message Is Delayed During Processing?
	What Happens When a Filter Makes a Message Undeliverable
	What Happens When Destination Sort Keys are Used
	Using Unit-of-Order with Distributed Destinations
	Using the Path Service
	Using Hash-based Routing
	Configuring Routing on Uniform Distributed Destinations

	Using Unit-of-Order with Topics
	Using Unit-of-Order with JMS Message Management
	Using Unit-of-Order with WebLogic Store-and-Forward
	Using Unit-of-Order with WebLogic Messaging Bridge

	Limitations of Message Unit-of-Order

	Using Unit-of-Work Message Groups
	What Are Unit-of-Work Message Groups?
	Understanding Message Processing With Unit-of-Work
	Basic UOW Terminology
	Rules For Processing UOW Messages
	Message Unit-of-Work Case Study
	Jill Orders Miscellaneous Items From an Online Retailer
	How Message Unit-of-Work Completes the Order

	How to Create a Unit-of-Work Message Group
	How To Write a Producer to Set UOW Message Properties
	Example UOW Producer Code
	UOW Exceptions

	How to Write a UOW Consumer and/or Producer For an Intermediate Destination
	Configuring Terminal Destinations
	UOW Message Routing for Terminal Distributed Destinations

	How to Write a UOW Consumer For a Terminal Destination

	Message Unit-of-Work Advanced Topics
	Message Property Handling
	System-Generated Properties
	Final Component Message Properties
	Component Message Heterogeneity
	ReplyTo Message Property

	UOW and Uniform Distributed Destinations
	UOW and Store-and-Forward Destinations

	Limitations of UOW Message Groups

	Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction

	WebLogic JMS C API
	What Is the WebLogic JMS C API?
	System Requirements
	WebLogic JMS C API Code Examples
	Design Principles
	Java Objects Map to Handles
	Thread Utilization
	Exception Handling
	Type Conversions
	Integer (int)
	Long (long)
	Character (char)
	String

	Memory Allocation and Garbage Collection
	Closing Connections
	Helper Functions

	Security Considerations
	Implementation Guidelines

	Recovering from a Server Failure
	Automatic JMS Client Failover
	Automatic Failover for JMS Producers
	Sample Producer Code
	Re-usable ConnectionFactory Objects
	Re-usable Destination Objects
	Reconnected Connection Objects
	Reconnected Session Objects
	Reconnected MessageProducer Objects

	Configuring Automatic Failover for JMS Consumers
	Sample Consumer Client Code
	Configuring Automatic Client Refresh Options
	Common Cases for Reconnected Consumers
	Special Cases for Reconnected Consumers

	Explicitly Disabling Automatic Failover on JMS Clients
	Programmatically
	Administratively

	Limitations for Automatic JMS Client Failover
	Best Practices for JMS Clients Using Automatic Failover
	Use Transactions to Group Message Work
	JMS Clients Should Always Call the close() Method

	Programming Considerations for WebLogic Server 9.0 or Earlier Failures
	Migrating JMS Data to a New Server

	Deprecated WebLogic JMS Features
	Defining Server Session Pools
	Step 1: Look Up Server Session Pool Factory in JNDI
	Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	Create a Server Session Pool for Queue Connection Consumers
	Create a Server Session Pool for Topic Connection Consumers

	Step 3: Create a Connection Consumer
	Create a Connection Consumer for Queues
	Create a Connection Consumer for Topics

	Example: Setting Up a PTP Client Server Session Pool
	Example: Setting Up a Pub/Sub Client Server Session Pool

	FAQs: Integrating Remote JMS Providers
	Understanding JMS and JNDI Terminology
	Understanding Transactions
	How to Integrate with a Remote Provider
	Best Practices when Integrating with Remote Providers
	Using Foreign JMS Server Definitions
	Using EJB/Servlet JMS Resource References
	Using WebLogic Store-and-Forward
	Using a Messaging Bridge
	Using Messaging Beans
	JMS Interoperability Resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

