
www.jboss.com

2	 In search of high-performance applications

2	P erformance tuning principles

2	 Why tune for performance?

3	 Performance priorities

3	 A word about performance benchmarks

5	 JBoss EAP 4.3 Tuning

5	 Connection pooling

6	 Thread pooling

8	 Object and component pools

9	 Logging

9	 Caching

10	 JBoss EAP performance tuning summary

11	 Linux-specific tuning: Large memory pages

11	 Linux-specific tuning: Tuning the virtual memory manager

11	 Database tuning update

12	 Case study

13	�A pplication performance tuning:
A continuous process

13	�A ppendix: Using large-page memory
(Linux-specific instructions)

Best practices for
performance tuning
JBoss Enterprise
Application Platform 4.3
Tips and tricks for optimizing your application’s performance

2 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

In search of high-performance applications

Overall, performance tuning is a very important part of creating, maintaining, and deploying a successful
business application. Whether you are building custom applications or deploying commercial, off-the-shelf
solutions, you will likely need to tune the application, the database, the middleware, or all three. In fact, 75%
of performance issues originate with the application itself.

When organizations select application middleware, performance is always one of their most important
selection criteria, if not the most important. In many cases our customers tell us they chose JBoss
Enterprise Application Platform (EAP) because of its superior performance. They know that many users
of JBoss EAP are achieving superior application performance day after day.

To get the most from your company’s investment in middleware, developers and architects need to know
the specific ways they can achieve superior performance with JBoss EAP. While we would all like to think
|that an application could perform well straight out of the box, this is not usually the case. Applications
can have widely varying characteristics, and while some applications might perform well with default
middleware settings, others will not.

If you are new to JBoss EAP or performance tuning, this paper will introduce you to best practices that can
help you avoid common performance pitfalls as you prepare your application for production. If you’re an old
hand at application performance issues, you know that technology is constantly changing. You may benefit
from an update on best practices in JBoss EAP performance tuning.

Performance tuning principles

Why tune for performance?

Performance was once considered just another feature of an application. Today it is frequently considered
the most important characteristic of the application — one that can have a significant impact on your
business and your productivity. Consider your reaction to a slow web site. If you’re like most people, you
become frustrated, lose patience, and go elsewhere. If that company is counting on revenue from web sales,
it has not only lost your attention — it has lost business. Even for internal applications, poor performance
can affect productivity if users have to wait or deal with unpredictable behavior. At best, they might
feel annoyed, lose a little time, or form a negative opinion of their IT departments. At worst, business
transactions may be lost, or customers may go without important service if users must work around
a poorly performing application.

But user experience is not the only reason to tune for performance. A well-performing application will
generally use fewer hardware and software resources. A company can optimize its investment in hardware
when applications are tuned appropriately, whether that means using older systems longer, purchasing
new systems that are more modestly sized, or using fewer systems overall. On the software side, a well-
performing application will generally need to use fewer CPU counts or software licenses, no matter what
type of software is involved. Reducing software costs can save the company significant money over time.

www.jboss.com 3

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Performance priorities

Superior performance comes from many layers of the application stack, not just the application server. In
many cases, the way the application is designed and how it connects to the database and other software
components can have a large impact on overall application performance. Many organizations spend more
time tuning their custom-built applications and databases than their underlying application servers. So
keep in mind that a superiorly performing application server may have only a minor impact on the overall
performance of your applications.

A word about performance benchmarks

Some organizations rely on industry-standard performance benchmarks when selecting middleware. While
benchmarks can help vendors, they can deceive you as an evaluator because benchmark applications
are usually very different from the applications you will run in production. The current benchmark for
application servers, for example, SPECjAppServer2004, is a 2004 application that doesn’t take advantage
of many recent developments in Java. But aside from that, every application is different and the systems
on which benchmark applications are run may be very different from yours. Understanding how a given
benchmark runs may tell you very little about how your application will run on your hardware with your
settings. Before you rely on a benchmark, you need to investigate the software and hardware configurations
used, the server and network configurations, the settings used, the architecture of the application, and how
all of these compare with your own environment. We recommend that before selecting a system, you test it
with an application and hardware configuration as close to yours as possible.1

Performance tuning principle #1:
Understand your performance requirements

The first step in tuning your application for performance is to understand the conditions under which it will
need to perform. If your application is a replacement for an existing solution, then your organization already
has significant experience with that solution. Chances are you have metrics available such as the number of
users, the number of transactions per day, the variations in transaction load or type over the course of a day,
week, month, or year, and so on.

If you are deploying a completely new solution, you will need to study that application’s business context
very carefully. The more you understand exactly how your application will be used, the more successful your
performance tuning will be. Sometimes assumptions do not reflect reality. In one case, a development team
created and tested its application based on an assumed workload of 60,000 transactions per day. The first
day in production, 6 million transactions occurred.

Performance tuning principle #2:
Plan for peaks, not averages

As you examine performance requirements, one of your goals should be to develop a profile of your
application’s workload with special attention to the peaks. For example, many business applications
experience daily peaks in the morning and afternoon with a valley during the middle of the day when

1	 For a more in-depth explanation of the pros and cons of performance benchmarks, see Do Performance
Benchmarks & Comparisons Matter? — A Guide to Assessing Application Server Performance Results.

4 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

employees are eating lunch. Some applications experience peaks at the end of the month, quarter, or
season. Your application’s workload profile will depend on the specifics of your business, but you should
always pay particular attention to periods of peak workload. One of the biggest mistakes developers make
is to rely on an average (average daily workload, for example). Averages are not sufficient to ensure that
your application will perform during periods of peak load.

Performance tuning principle #3:
Always instrument your application

All applications should be instrumented to provide information for performance analysis. Business
conditions, including customer behavior and workload curves, can change dramatically over time, so even if
an application once performed well, it may not perform well under today’s conditions. If you run into trouble,
and your application has not been instrumented for performance, then you have no easy way to know where
your problems are. But if your application is appropriately instrumented, then you’ll be able to monitor
changes in business conditions easily and tune your applications to match before problems occur.

In the past, in order to instrument an application, a developer needed to embed code within the application
itself. Today many solutions provide information without requiring developers to code. With JBoss EAP, the
call statistics in the container provide you the number of calls, concurrent calls, min call time, max call time,
average call time, and the standard deviation of call times. Hibernate statistics provide query execution
times, and JBoss ON Monitoring can display all of this information and graph the results in real time.
Additionally, numerous third-party application performance management (APM) products are available
from certified Red Hat partners to provide application performance information as well.

Finally, for performance-critical situations where one of the other tools doesn’t provide the information you
need, you can write your own instrumentation using the JBoss AOP framework. This framework offers quite
a few features that enable you to see exactly what is happening at runtime. Whether you choose to write
your own instrumentation will depend on the application, your skills and available time, and the importance
of the application’s performance characteristics to its overall success.

Performance tuning principle #4:
Understand where your application spends its time

One important reason to instrument your application is to understand where time is being spent. While you
want to know about time across each layer of your application stack, the tools within JBoss EAP will help
you understand only part of this equation. If your application is spending too much time in the database,
for example, then you may need to focus on your database statistics to pin down the problem.

By understanding where your application spends its time, you will be able to avoid the “shotgun method”
of performance tuning — trying multiple solutions to common problems without knowing whether any of
them are relevant to your problem. You might solve your problem this way, but the probability is low. Many
developers who assume they know what is causing their performance problem are mistaken, resulting in
problems that persist for months or sometimes years. That is why having an objective way to know where
your application is spending time will help you avoid spending too much time solving performance problems.

www.jboss.com 5

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Performance tuning principle #5
Replicate or model your production environment

As you work to understand exactly how your application will perform in production, you will need to run it
in a test environment. Some companies make it standard practice to implement a test environment that
is an exact replica of their production environment. This is an ideal approach in many respects, because
developers don’t have to wonder how their applications will scale for larger systems.

For many organizations, though, the cost of replicating the production environment is a significant
obstacle. Their test environments typically employ smaller systems. If this is your situation, then you will
need to create a model that defines the relationship between performance in your test environment and
performance in the production environment. That is, you need to model how the application will scale. As
you do so, keep the following in mind:

Do NOT assume a linear relationship.•	 Performance doesn’t often scale in a linearly. Vendors may
tell you they experience linear results, but for real production applications, this is rarely the case.

Be conservative in creating your model, and use actual historical data wherever possible.•	 If you can
base your model on data from past experience with other applications, you will be able to refine it over
time and increase your confidence in its accuracy.

JBoss EAP 4.3 Tuning

While 75% of all performance problems are the result of the application, not the middleware or the
operating system, you still need to know how to tune settings in the middleware to improve performance
and throughput. Depending on your application, one or more of the following may need some attention:

Connection pooling•	

Thread pooling•	

Object and component pools•	

Logging•	

Caching•	

The following sections provide an overview of each of these areas.

Connection pooling

Connection pooling and thread pooling are the most important areas to consider when you want to maximize
throughput on modern hardware. In terms of system resources, database connections are expensive to
set up and tear down. But in spite of this, some applications create a new connection to the database with
every query or transaction and then close that connection immediately. This practice adds a great deal of
overhead to transaction processing and can lead to poor performance.

6 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

To take advantage of the robust connection pooling in JBoss Enterprise Application Platform, start by
adjusting connection pool settings on the data source definitions that you can set up in the deploy directory.
Set the minimum pool size to the level you want to tune for, then set the maximum at least 25-30% higher.
Don’t be concerned about setting the maximum too high, as the pool will shrink automatically you don’t need
that many connections.

To determine the proper sizing, you can monitor your connection usage. Too small a pool will also throttle
the application, as the EAP will queue the request for a default of 30,000 milliseconds (or 30 seconds)
before giving up and throwing an exception. If you start seeing a lot of 30-second timeouts, that is a strong
clue that you need to look at your connection pooling. You can monitor the connection pool utilization from
the EAP JMX console, from JBoss ON, or from database-specific tools.

Here is an example of connection pool settings for a data source:

<datasources>
 <local-tx-datasource>
 <jndi-name>MySQLDS</jndi-name>
 <connection-url>jdbc:mysql://<host>:3306/Schema</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>someuser</user-name>
 <password>somepassword</password>
 <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.
MySQLExceptionSorter</exception-sorter-class-name>
 <min-pool-size>75</min-pool-size>
 <max-pool-size>100/max-pool-size>
 ...
 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml -->
 <metadata>
 <type-mapping>mySQL</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

Thread pooling

Thread pooling is the next most important area to consider as you tune your application for performance.
JBoss EAP has robust thread pooling, but before you can size the thread pools appropriately, you need
to know how they are used and which ones might be affecting your application’s performance. The
characteristics of your specific application will determine which thread pools are used and which ones
might become bottlenecks. This can vary significantly from application to application. The table below
provides a summary of how each thread pool is used.

www.jboss.com 7

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Removing connectors

If you are certain that a particular connector will not be used in your application, we recommend removing
it. For example, many applications use either the HTTPd thread pool or the mod_jk thread pool but not both.
So you can remove the one you don’t need.

Monitoring and tuning thread pools

Monitor your thread pools via the EAP 4.3 JMX Console, which displays not only the number of active
threads for each pool but also the queue size. We recommend that you adjust thread pool settings through
JBoss Operations Network, as it allows you to define settings that persist. Settings adjusted via the JMX
console will not survive a reboot. If you use the JMX console, please remember to go back and edit the file
if you want the adjustments to be permanent.

Thread pool Where is it defined? How is it used?

System thread pool In jboss-service.xml in the conf directory For JNDI naming — the default setting
is fine for most cases

HTTPD thread pool
in JBoss Web

In the server.xml file under <server>/
deploy/jboss-web.deployer

When making HTTP requests directly
to EAP

AJP thread pool In the connector section of server.xml When making HTTP requests through
mod_jk

JCA thread pool
(also called the Work
Manager thread pool)

<server>/deploy/jbossjca-
service.xml

In conjunction with JMS, as JBoss
Messaging uses JCA inflow as the
integration into EAP

JBoss Messaging thread
pool (for remote clients)

<server>deploy/jboss-messaging.
sar/remoting-bisocket-service.xml

Pools the TCP sockets

JBoss Messaging thread
pool (in JVM clients)

Not directly configurable Pool is bounded by the number of
MDBs you have defined

EJB 3 (same JVM) Clients in the same JVM will run
on whatever thread pool they are
already using

For example, a web request comes
in through the AJP connector. When
it calls an EJB 3 bean, it will continue
executing on the AJP connector
thread pool.

EJB (remote clients) <server>/ejb3/deployer/META-INF/
jboss-service.xml

8 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Example: HTTP thread pool

<Connector port=”8080” address=”${jboss.bind.address}”
 maxThreads=”250” maxHttpHeaderSize=”8192”
 emptySessionPath=”true” protocol=”HTTP/1.1”
 enableLookups=”false” redirectPort=”8443” acceptCount=”100”
 connectionTimeout=”20000” disableUploadTimeout=”true” />

Example: mod_jk or AJP thread pool

<!-- Define an AJP 1.3 Connector on port 8009 -->
 <Connector port=”8009” address=”${jboss.bind.address}” protocol=”AJP/1.3”
 emptySessionPath=”true” enableLookups=”false” redirectPort=”8443”
 maxThreads=”200” />

Example: JCA thread pool

<mbean code=”org.jboss.util.threadpool.BasicThreadPool”
 name=”jboss.jca:service=WorkManagerThreadPool”>
 <!-- The name that appears in thread names -->
 <attribute name=”Name”>WorkManager</attribute>
 <!-- The maximum amount of work in the queue -->
 <attribute name=”MaximumQueueSize”>1024</attribute>
 <!-- The maximum number of active threads -->
 <attribute name=”MaximumPoolSize”>100</attribute>
 <!-- How long to keep threads alive after their last work (default one minute)
-->
 <attribute name=”KeepAliveTime”>60000</attribute>
 </mbean>
 <mbean code=”org.jboss.resource.work.JBossWorkManager”
 name=”jboss.jca:service=WorkManager”>
 <depends optional-attribute-name=”ThreadPoolName”>jboss.jca:service=
WorkManagerThreadPool</depends>
 <depends optional-attribute-name=”XATerminatorName”>jboss:service=
TransactionManager</depends>
 </mbean>

Object and component pools

Object pools and component pools are essentially the same thing. Their settings represent the number of
object instances. For EJB 3 two types of pools are defined in <server>/deploy/ejb3-interceptors-
aop.xml. These are the ThreadLocalPool and the StrictMaxPool. By default, Stateless Session and Stateful
Session Beans use the ThreadLocalPool, which is backed by an InfinitePool with no maximum size. Therefore,
it grows according to volume in your application. This has the distinct advantage of not needing to be tuned.
By default, Message Driven Beans (MDBs) use the StrictMaxPool. This pool actually obeys a maximum, will

www.jboss.com 9

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

queue up requests when that maximum has been reached, and will time out anything in the queue if there is
not an available reference from the pool. In this case, the system will throw an exception and if the problem
occurred in mid-transaction, you will experience a transaction rollback. Given the impact failed transactions
can have on your business, we recommend that you monitor the StrictMaxPool closely via the JMX console.

Logging

Developers should take full advantage of logging in the development and testing phases of the application
lifecycle. In production, however, logging can cause bottlenecks. You want to be sure that logging provides
you with useful information without hurting application throughput. Consider making the following changes
as you promote your application into production:

Turn off console logging in production.•	 In EAP’s default configuration, console logging is enabled, which
means you have the opportunity to see all the logs from your IDE. In production, this is an expensive
process with unbuffered I/O. While some applications may be fine with console logging, high-volume
applications benefit from turning it off. JBoss EAP 4.3 offers a new configuration set, named Production,
which gives developers a better starting point for creating a production environment. In the Production
configuration, console logging is turned off.

Turn down logging verbosity.•	 The less you log, the less I/O will occur, and the better your overall
application throughput will be. Logging is always a tradeoff, so think carefully about how much logging
you really need in production.

Use asynchronous logging.•	 This can make a big difference for high-throughput applications. With
asynchronous logging, log messages will go into a queue and control returns to the application as if
the logging had been completed. Then a separate thread executes the log operations from the queue.

Wrap debug log statements with•	 If(debugEnabled()). This simple practice can make a huge
difference if your application contains a lot of debug log statements. Without this condition set, your
application creates all of the string objects for each of the log statements, and Log4j creates the
LoggingEvent object for each log statement regardless of the log level that is set because the log level
is checked only after all of these objects have been created. In some cases this can lead to creation
of thousands and thousands of temporary String and LoggingEvent objects, resulting in memory and
garbage collection issues and reducing throughput dramatically. By placing a conditional wrapper
around your debug log statements, you can ensure that unnecessary log processing does not affect
your throughput.

Caching

Caching, while often very helpful, may be one of the trickiest areas to tune correctly. JBoss Cache is an
integral part of the EAP infrastructure, and your application can use it to cache anything you like. Caching
is especially valuable for applications that perform a lot of read operations against data that is either
completely static or doesn’t change frequently, such as reference data. For applications with heavy use of
write operations, caching may simply add overhead without providing any real benefit. If not configured
properly, Caching may actually reduce throughput.

10 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

One of the easiest potential performance enhancements you can make is to cache EJB 3 entities. To
define which entities you want cached, modify the file persistence.xml that you deploy with your EJB
3 application (an example is shown below). You define the cache size and eviction policy in the file ejb3-
entity-cache-service.xml found in the deploy directory. These definitions may require some trial
and error to get right. Remember that you are working with limited heap space, and a misguided caching
strategy can be worse than none at all.

Eviction policy will depend on the specifics of your application. You can define the cache as transactional
or read-write. With very large data sets, note that caching may not provide noticeable performance benefits.
In this case, shrinking the caches can improve performance. Also, if your application is very write-heavy,
it may not benefit from caching. Testing various caching and non-caching configurations will help you
determine this.

Example: Settings for caching in persistence.xml

<persistence>
<persistence-unit name=”services” transaction-type=”JTA”>
<provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/MySQLDS</jta-data-source>
 <properties>
 <property name=”hibernate.default_catalog” value=”EJB3”/>
 ...
 <property name=”hibernate.cache.provider_class”
 value=”org.jboss.ejb3.entity.TreeCacheProviderHook”/>
 <property name=”hibernate.treecache.mbean.object_name”
 value=”jboss.cache:service=EJB3EntityTreeCache”/>
 <property name=”hibernate.ejb.classcache.services.entities.Customer”
value=”read-only”/>
 <property name=”hibernate.ejb.classcache.services.entities.Inventory”
value=”transactional”/>
 ...
 </properties>
</persistence-unit>
</persistence>

JBoss EAP performance tuning summary

To summarize, keep the following performance recommendations in mind when tuning JBoss EAP 4.3.

Define data sources in the deploy directory and take advantage of EAP’s robust connection pooling.•	

Understand which thread pools are actually used by your application, remove pools that are not •	
needed, monitor the number of active threads and the queue size, and adjust pool size if needed.

If you are using message-driven beans, monitor the StrictMaxPool closely to ensure that the maximum •	
object pool size is not a bottleneck.

www.jboss.com 11

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Employ different logging strategies for development and production. Especially for high-volume •	
applications, turn console logging off, reduce logging verbosity, use asynchronous logging, and always
wrap debug log statements with If (debugEnabled ()).

Take advantage of caching if your application is read-heavy or makes significant use of reference data. •	
Avoid caching for very large data sets or write-heavy applications.

Linux-specific tuning: Large memory pages2

For today’s 64-bit systems, use of large memory pages can improve performance significantly. The default
memory page size is typically 4 KB. When you are addressing large amounts of memory, this quickly adds
up to a large number of memory pages — just one gigabyte requires 262,144 memory pages. That’s a lot for
a system to keep track of, which translates to a lot of system overhead.

Aside from helping you avoid the overhead of mapping so many memory pages, large memory pages on
Linux cannot be swapped to disk. This is a major advantage because having your heap space swap to disk
can wreck havoc on the performance of your application.

Large page support begins at 2 MB and can run as high as 256 MB on some hardware architectures. These
numbers will vary, and you will need to find out the values for your specific server. All the major JVM
systems support large memory pages on Linux. Because it can be tricky to set up, we provide some specific
instructions in the appendix.

When you use large-page memory, keep in mind that the memory is not available to applications in general.
To other applications, your system will look as though it has had memory removed from it, because this
memory will be dedicated to your specific application. Refer to the appendix for more specific information
about configuring your application to use large memory pages.

Linux-specific tuning: Tuning the virtual memory manager

In Linux, the virtual memory manager is tunable. In some cases, you can achieve performance benefits by
changing the settings. You won’t be using the file system cache much, and you don’t want the system to
favor the file system cache over your applications, which can sometimes occur with the default settings.

In /etc/sysctl.conf you can set vm.swappiness to 1 to prevent applications from being swapped to
disk when there is memory pressure.

Database tuning update

Modern databases, especially 64-bit, are extremely efficient at caching data. In the early days of 64-bit
databases, large buffer sizes would slow performance due to elongated search times, but this is no longer
true. In our testing, we have experienced OLTP applications with very large buffer caches that show very
good results.

Consider your application’s characteristics — especially its read/write ratios — when deciding whether and how
to use database caching. The majority of applications we see today are read-intensive, as most applications
drive their business logic by reading data from the database. The more read-intensive the application is, the
more caching can help. If the application is write-heavy, or the data set is very large (from a data warehouse,
for example), then a large cache won’t help and may slow down the application.

2	 While this section provides Linux-specific settings, the principles of large memory page use are applicable
to any 64-bit system.

12 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

You should use Direct I/O if your database supports it. Especially with a large cache or a write-intensive
workload, you should avoid double buffering with the file system buffer cache. Note that MySQL 5
documentation indicates that queries may slow down by up to a factor of 3 when using DIRECT I/O, but we
have not experienced this in cases where a properly sized buffer pool is used. If you are using DIRECT I/O,
you should be sure to use the virtual memory setting mentioned earlier. We also suggest using asynchronous
I/O if your database supports it.

Case study

To demonstrate the dramatic results that can be achieved with JBoss EAP performance tuning, we
performed an experiment using a sample application.

We began with JBoss EAP’s default configuration (with one minor exception), along with all Linux parameters
at their defaults. Using Grinder, an open source Java load-testing framework, we measured the highest
throughput we could achieve with all of these settings. Using the same application, we then applied many of
the optimizations discussed here, both to JBoss EAP and to the operating system (in this case, Linux), and
measured throughput again.

The application was an EJB3 application with two servlets for the UI, stateless and stateful session beans
for most of the business logic, a message driven POJO for some asynchronous processing, and entities for
the persistence. All tests were performed with 3.5 GB heap and a data source with sufficient connections
in the pool.

The following graph first illustrates a single virtual user as a baseline for measuring scalability as we
added users. As one would expect, the first two bars are statistically equal regardless of the performance
optimizations made. The next two bars show how many virtual users we could achieve before we were no
longer at 85% of linear scalability, as measured by a transactions per second (TPS) mean from the baseline
(the bars on the left). You can see that in the un-optimized case, we were able to reach 25 virtual users,
and in the optimized case, we were able to reach 75 virtual users. We achieved a threefold increase in the
number of virtual users that the same system could support, simply by optimizing system performance.

80

70

60

50

40

30

20

10

0

Baseline EJB 3 application
1 virtual user
TPS (mean)

No optimizations

Baseline EJB 3 application
1 virtual user
TPS (mean)
Optimized

Top throughput test
25 virtual users

TPS (mean)
No optimizations

Top throughput test
75 virtual users

TPS (mean)
Optimized

JBoss eap performance tuning

www.jboss.com 13

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Application performance tuning:
A continuous process

Tuning an application for optimal performance can ensure a positive user experience, promote business
productivity, and help to optimize use of hardware and software resources. Performance tuning is not a
one-time task, but an ongoing process that ensures a well-performing application as business conditions
and system technology change over time. Application developers and architects should always be prepared
to tune their applications for performance both before and after they are put into production. As always,
the more business-critical an application is and the higher the volume of transactions it must support, the
more important performance tuning will be to your business.

When tuned in accordance with the characteristics of your application, JBoss Enterprise Application
Platform (EAP) can provide superior application performance. This paper has given you an overview of
basic performance principles as well as an introduction to performance tuning best practices for JBoss
EAP. Keep in mind that these techniques apply to any of the Red Hat platforms that JBoss EAP supports:
JBoss Enterprise Portal Platform, JBoss Enterprise SOA Platform, and JBoss Enterprise BRMS.

For additional information on JBoss EAP performance tuning, please refer to:

Managing application performance: JBoss Operations Network•	

JBoss EAP 4.3 Server Configuration Guide•	

JBoss EAP Optimization and Tuning Assistance Services •	

JBoss EAP 4.3 Product Documentation•	

Appendix: Using large-page memory
(Linux-specific instructions)

This appendix contains a procedure and example designed to help you take advantage of large-page memory
for your applications. See the section “Linux-specific tuning: Large memory pages” earlier in this paper for
an overview.

1. Tell the JVM to use large-page memory.

Sun JVM and Open JDK require the following option, passed on the command line, to use large pages:

 -XX:+UseLargePages

The Sun instructions leave it at that, but if you do nothing else you will most likely get the following error:
Failed to reserve shared memory (error-no=12)

The following sections describe additional steps you should complete.

14 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

2. Set kernel parameters.

Set three kernel parameters in /etc/sysctl.conf as follows:

kernel.shmmax = n •	
Where n is equal to the number of bytes of the maximum shared memory segment allowed on the
system. You should set it to at least the size of the largest heap size you want to use for the JVM.
Alternatively, you can set it to the total amount of memory in the system, and you will never have
to revisit it.

vm.nr_hugepages = n•	
Where n is equal to the number of large pages. You will need to look up the large page size in
/proc/meminfo.

vm.huge_tlb_shm_group = gid•	
Where gid is the ID of a shared group ID for the users you want to have access to the large pages.
This setting enables you to limit access to the large memory segment.

3. Set Limits.conf parameters.

Next, set these memlock limits in /etc/security/limits.conf:

<username> soft memlock n
<username> hard memlock n

where <username> is the runtime user of the JVM, and n is the number of pages from vm.nr_hugepages
multiplied by the page size in KB from /proc/meminfo.

4. Persist your settings.

Enter the command:

sysctl –p

This ensures that the settings you created in step 3 will survive a reboot.

5. Reboot.

When the OS allocates these pages, it must find contiguous memory for them or the operation will fail.
A reboot will prevent this problem.

6. Confirm page allocation.

When large pages are allocated, /proc/meminfo will display a non-zero number for HugePages_Total.
If you do not see a non-zero number, then you are not using the large pages, and something is configured
incorrectly.

www.jboss.com 15

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

We have sometimes seen a problem with MYSQL where the SELinux policy was preventing it from accessing
the large pages. Check /var/log/messages for avc_denied messages (error-no=13 “permission
denied”) in the mysqld.log.

Example: Setting large memory pages

Consider a server with 8 GB of memory. We will allocate 6 GB to be shared by the JBoss EAP JVM and
a MySQL database.

The page size is 2 MB, as shown in /proc/meminfo (Hugepagesize: 2048KB)

Configuration: /etc/sysctl.conf

Change maximum shared memory segment size to 8 GB. •	
kernel.shmmax = 8589934592

Add the gid to the •	 hugetlb_shm_group to give access to the users.
vm.hugetlb_shm_group = 501

Add 6 GB in 2 MB pages to be shared between the JVM and MySQL. •	
vm.nr_hugepages = 3072

Calculations:

	 1024*1024*1024*8 = 8589934592

	 (1024*1024*1024*6)/(1024*1024*2) or 6 GB/2 MB = 3072 pages

Configuration: /etc/security/limits.conf

Add the limits for memlock to allow the JVM and MySQL to access the large-page memory.•	

 jboss soft memlock 6291456
 jboss hard memlock 6291456
 mysql soft memlock 6291456
 mysql hard memlock 6291456
 root soft memlock 6291456
 root hard memlock 6291456

Calculations:

	 3072 large pages * 2048 KB page size – 3072 *2048 = 6291456

Configuration: /etc/group

Add JBoss and MySQL users to the 501 (•	 hugetlb) group in /etc/group to give users permission
to attach to the shared memory segment.

JBOSS Sales and Inquiries North America

1–888–REDHAT1
www.jboss.com

Copyright © 2009 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, and
RHCE are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered trademark
of Linus Torvalds in the U.S. and other countries.

www.jboss.com
1388350_1109

