
www.jboss.com

2 In search of hIgh-performance applIcatIons

2 performance tunIng prIncIples

2 Why tune for performance?

3 Performance priorities

3 A word about performance benchmarks

5 JBoss eap 4.3 tunIng

5 Connection pooling

6 Thread pooling

8 Object and component pools

9 Logging

9 Caching

10 JBoss EAP performance tuning summary

11	 Linux-specific	tuning:	Large	memory	pages

11	 Linux-specific	tuning:	Tuning	the	virtual	memory	manager

11 Database tuning update

12 Case study

13 applIcatIon performance tunIng:
a contInuous process

13 appendIx: usIng large-page memory
(lInux-specIfIc InstructIons)

Best practices for
performance tuning
JBoss enterprIse
applIcatIon platform 4.3
tIps and trIcks for optImIzIng your applIcatIon’s performance

2 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

in search of high-performance applications

Overall,	performance	tuning	is	a	very	important	part	of	creating,	maintaining,	and	deploying	a	successful	
business	application.	Whether	you	are	building	custom	applications	or	deploying	commercial,	off-the-shelf	
solutions,	you	will	likely	need	to	tune	the	application,	the	database,	the	middleware,	or	all	three.	In	fact,	75%	
of performance issues originate with the application itself.

When	organizations	select	application	middleware,	performance	is	always	one	of	their	most	important	
selection	criteria,	if	not	the	most	important.	In	many	cases	our	customers	tell	us	they	chose	JBoss	
Enterprise Application Platform (EAP) because of its superior performance. They know that many users
of	JBoss	EAP	are	achieving	superior	application	performance	day	after	day.

To	get	the	most	from	your	company’s	investment	in	middleware,	developers	and	architects	need	to	know	
the	specific	ways	they	can	achieve	superior	performance	with	JBoss	EAP.	While	we	would	all	like	to	think	
|that	an	application	could	perform	well	straight	out	of	the	box,	this	is	not	usually	the	case.	Applications	
can	have	widely	varying	characteristics,	and	while	some	applications	might	perform	well	with	default	
middleware	settings,	others	will	not.	

If	you	are	new	to	JBoss	EAP	or	performance	tuning,	this	paper	will	introduce	you	to	best	practices	that	can	
help	you	avoid	common	performance	pitfalls	as	you	prepare	your	application	for	production.	If	you’re	an	old	
hand	at	application	performance	issues,	you	know	that	technology	is	constantly	changing.	You	may	benefit	
from an update on best practices in JBoss EAP performance tuning.

performance tuning principles

Why tune for performance?

Performance was once considered just another feature of an application. Today it is frequently considered
the	most	important	characteristic	of	the	application	—	one	that	can	have	a	significant	impact	on	your	
business	and	your	productivity.	Consider	your	reaction	to	a	slow	web	site.	If	you’re	like	most	people,	you	
become	frustrated,	lose	patience,	and	go	elsewhere.	If	that	company	is	counting	on	revenue	from	web	sales,	
it	has	not	only	lost	your	attention	—	it	has	lost	business.	Even	for	internal	applications,	poor	performance	
can	affect	productivity	if	users	have	to	wait	or	deal	with	unpredictable	behavior.	At	best,	they	might	
feel	annoyed,	lose	a	little	time,	or	form	a	negative	opinion	of	their	IT	departments.	At	worst,	business	
transactions	may	be	lost,	or	customers	may	go	without	important	service	if	users	must	work	around	
a poorly performing application.

But user experience is not the only reason to tune for performance. A well-performing application will
generally	use	fewer	hardware	and	software	resources.	A	company	can	optimize	its	investment	in	hardware	
when	applications	are	tuned	appropriately,	whether	that	means	using	older	systems	longer,	purchasing	
new	systems	that	are	more	modestly	sized,	or	using	fewer	systems	overall.	On	the	software	side,	a	well-
performing	application	will	generally	need	to	use	fewer	CPU	counts	or	software	licenses,	no	matter	what	
type	of	software	is	involved.	Reducing	software	costs	can	save	the	company	significant	money	over	time.	

www.jboss.com 3

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

performance prIorItIes

Superior	performance	comes	from	many	layers	of	the	application	stack,	not	just	the	application	server.	In	
many	cases,	the	way	the	application	is	designed	and	how	it	connects	to	the	database	and	other	software	
components	can	have	a	large	impact	on	overall	application	performance.	Many	organizations	spend	more	
time	tuning	their	custom-built	applications	and	databases	than	their	underlying	application	servers.	So	
keep	in	mind	that	a	superiorly	performing	application	server	may	have	only	a	minor	impact	on	the	overall	
performance of your applications.

a Word aBout performance Benchmarks

Some organizations rely on industry-standard performance benchmarks when selecting middleware. While
benchmarks	can	help	vendors,	they	can	deceive	you	as	an	evaluator	because	benchmark	applications	
are	usually	very	different	from	the	applications	you	will	run	in	production.	The	current	benchmark	for	
application	servers,	for	example,	SPECjAppServer2004,	is	a	2004	application	that	doesn’t	take	advantage	
of	many	recent	developments	in	Java.	But	aside	from	that,	every	application	is	different	and	the	systems	
on	which	benchmark	applications	are	run	may	be	very	different	from	yours.	Understanding	how	a	given	
benchmark	runs	may	tell	you	very	little	about	how	your	application	will	run	on	your	hardware	with	your	
settings.	Before	you	rely	on	a	benchmark,	you	need	to	investigate	the	software	and	hardware	configurations	
used,	the	server	and	network	configurations,	the	settings	used,	the	architecture	of	the	application,	and	how	
all	of	these	compare	with	your	own	environment.	We	recommend	that	before	selecting	a	system,	you	test	it	
with	an	application	and	hardware	configuration	as	close	to	yours	as	possible.1

performance tuning principle #1:
understand your performance requirements

The	first	step	in	tuning	your	application	for	performance	is	to	understand	the	conditions	under	which	it	will	
need	to	perform.	If	your	application	is	a	replacement	for	an	existing	solution,	then	your	organization	already	
has	significant	experience	with	that	solution.	Chances	are	you	have	metrics	available	such	as	the	number	of	
users,	the	number	of	transactions	per	day,	the	variations	in	transaction	load	or	type	over	the	course	of	a	day,	
week,	month,	or	year,	and	so	on.	

If	you	are	deploying	a	completely	new	solution,	you	will	need	to	study	that	application’s	business	context	
very	carefully.	The	more	you	understand	exactly	how	your	application	will	be	used,	the	more	successful	your	
performance	tuning	will	be.	Sometimes	assumptions	do	not	reflect	reality.	In	one	case,	a	development	team	
created	and	tested	its	application	based	on	an	assumed	workload	of	60,000	transactions	per	day.	The	first	
day	in	production,	6	million	transactions	occurred.	

performance tuning principle #2:
plan for peaks, not averages

As	you	examine	performance	requirements,	one	of	your	goals	should	be	to	develop	a	profile	of	your	
application’s	workload	with	special	attention	to	the	peaks.	For	example,	many	business	applications	
experience	daily	peaks	in	the	morning	and	afternoon	with	a	valley	during	the	middle	of	the	day	when	

1	 For	a	more	in-depth	explanation	of	the	pros	and	cons	of	performance	benchmarks,	see	Do	Performance	
Benchmarks	&	Comparisons	Matter?	—	A	Guide	to	Assessing	Application	Server	Performance	Results.	

4 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

employees	are	eating	lunch.	Some	applications	experience	peaks	at	the	end	of	the	month,	quarter,	or	
season.	Your	application’s	workload	profile	will	depend	on	the	specifics	of	your	business,	but	you	should	
always	pay	particular	attention	to	periods	of	peak	workload.	One	of	the	biggest	mistakes	developers	make	
is	to	rely	on	an	average	(average	daily	workload,	for	example).	Averages	are	not	sufficient	to	ensure	that	
your application will perform during periods of peak load.

performance tuning principle #3:
always instrument your application

All	applications	should	be	instrumented	to	provide	information	for	performance	analysis.	Business	
conditions,	including	customer	behavior	and	workload	curves,	can	change	dramatically	over	time,	so	even	if	
an	application	once	performed	well,	it	may	not	perform	well	under	today’s	conditions.	If	you	run	into	trouble,	
and	your	application	has	not	been	instrumented	for	performance,	then	you	have	no	easy	way	to	know	where	
your	problems	are.	But	if	your	application	is	appropriately	instrumented,	then	you’ll	be	able	to	monitor	
changes in business conditions easily and tune your applications to match before problems occur.

In	the	past,	in	order	to	instrument	an	application,	a	developer	needed	to	embed	code	within	the	application	
itself.	Today	many	solutions	provide	information	without	requiring	developers	to	code.	With	JBoss	EAP,	the	
call	statistics	in	the	container	provide	you	the	number	of	calls,	concurrent	calls,	min	call	time,	max	call	time,	
average	call	time,	and	the	standard	deviation	of	call	times.	Hibernate	statistics	provide	query	execution	
times,	and	JBoss	ON	Monitoring	can	display	all	of	this	information	and	graph	the	results	in	real	time.	
Additionally,	numerous	third-party	application	performance	management	(APM)	products	are	available	
from	certified	Red	Hat	partners	to	provide	application	performance	information	as	well.

Finally,	for	performance-critical	situations	where	one	of	the	other	tools	doesn’t	provide	the	information	you	
need,	you	can	write	your	own	instrumentation	using	the	JBoss	AOP	framework.	This	framework	offers	quite	
a few features that enable you to see exactly what is happening at runtime. Whether you choose to write
your	own	instrumentation	will	depend	on	the	application,	your	skills	and	available	time,	and	the	importance	
of	the	application’s	performance	characteristics	to	its	overall	success.

performance tuning principle #4:
understand where your application spends its time

One important reason to instrument your application is to understand where time is being spent. While you
want	to	know	about	time	across	each	layer	of	your	application	stack,	the	tools	within	JBoss	EAP	will	help	
you	understand	only	part	of	this	equation.	If	your	application	is	spending	too	much	time	in	the	database,	
for	example,	then	you	may	need	to	focus	on	your	database	statistics	to	pin	down	the	problem.	

By	understanding	where	your	application	spends	its	time,	you	will	be	able	to	avoid	the	“shotgun	method”	
of performance tuning — trying multiple solutions to common problems without knowing whether any of
them	are	relevant	to	your	problem.	You	might	solve	your	problem	this	way,	but	the	probability	is	low.	Many	
developers	who	assume	they	know	what	is	causing	their	performance	problem	are	mistaken,	resulting	in	
problems	that	persist	for	months	or	sometimes	years.	That	is	why	having	an	objective	way	to	know	where	
your	application	is	spending	time	will	help	you	avoid	spending	too	much	time	solving	performance	problems.	

www.jboss.com 5

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

performance tuning principle #5
replicate or model your production environment

As	you	work	to	understand	exactly	how	your	application	will	perform	in	production,	you	will	need	to	run	it	
in	a	test	environment.	Some	companies	make	it	standard	practice	to	implement	a	test	environment	that	
is	an	exact	replica	of	their	production	environment.	This	is	an	ideal	approach	in	many	respects,	because	
developers	don’t	have	to	wonder	how	their	applications	will	scale	for	larger	systems.	

For	many	organizations,	though,	the	cost	of	replicating	the	production	environment	is	a	significant	
obstacle.	Their	test	environments	typically	employ	smaller	systems.	If	this	is	your	situation,	then	you	will	
need	to	create	a	model	that	defines	the	relationship	between	performance	in	your	test	environment	and	
performance	in	the	production	environment.	That	is,	you	need	to	model	how	the	application	will	scale.	As	
you	do	so,	keep	the	following	in	mind:

do not assume a linear relationship.•	 Performance doesn’t often scale in a linearly. Vendors may
tell	you	they	experience	linear	results,	but	for	real	production	applications,	this	is	rarely	the	case.

Be conservative in creating your model, and use actual historical data wherever possible.•	 	If	you	can	
base	your	model	on	data	from	past	experience	with	other	applications,	you	will	be	able	to	refine	it	over	
time	and	increase	your	confidence	in	its	accuracy.

JBoss eap 4.3 tuning

While	75%	of	all	performance	problems	are	the	result	of	the	application,	not	the	middleware	or	the	
operating	system,	you	still	need	to	know	how	to	tune	settings	in	the	middleware	to	improve	performance	
and	throughput.	Depending	on	your	application,	one	or	more	of	the	following	may	need	some	attention:

Connection pooling•	

Thread pooling•	

Object and component pools•	

Logging•	

Caching•	

The	following	sections	provide	an	overview	of	each	of	these	areas.	

connectIon poolIng

Connection pooling and thread pooling are the most important areas to consider when you want to maximize
throughput	on	modern	hardware.	In	terms	of	system	resources,	database	connections	are	expensive	to	
set	up	and	tear	down.	But	in	spite	of	this,	some	applications	create	a	new	connection	to	the	database	with	
every	query	or	transaction	and	then	close	that	connection	immediately.	This	practice	adds	a	great	deal	of	
overhead	to	transaction	processing	and	can	lead	to	poor	performance.	

6 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

To	take	advantage	of	the	robust	connection	pooling	in	JBoss	Enterprise	Application	Platform,	start	by	
adjusting	connection	pool	settings	on	the	data	source	definitions	that	you	can	set	up	in	the	deploy	directory.	
Set	the	minimum	pool	size	to	the	level	you	want	to	tune	for,	then	set	the	maximum	at	least	25-30%	higher.	
Don’t	be	concerned	about	setting	the	maximum	too	high,	as	the	pool	will	shrink	automatically	you	don’t	need	
that many connections.

To	determine	the	proper	sizing,	you	can	monitor	your	connection	usage.	Too	small	a	pool	will	also	throttle	
the	application,	as	the	EAP	will	queue	the	request	for	a	default	of	30,000	milliseconds	(or	30	seconds)	
before	giving	up	and	throwing	an	exception.	If	you	start	seeing	a	lot	of	30-second	timeouts,	that	is	a	strong	
clue	that	you	need	to	look	at	your	connection	pooling.	You	can	monitor	the	connection	pool	utilization	from	
the	EAP	JMX	console,	from	JBoss	ON,	or	from	database-specific	tools.	

Here	is	an	example	of	connection	pool	settings	for	a	data	source:

<datasources>
 <local-tx-datasource>
 <jndi-name>MySQLDS</jndi-name>
 <connection-url>jdbc:mysql://<host>:3306/Schema</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>someuser</user-name>
 <password>somepassword</password>
 <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.
MySQLExceptionSorter</exception-sorter-class-name>
 <min-pool-size>75</min-pool-size>
 <max-pool-size>100/max-pool-size>
 ...
 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml -->
 <metadata>
 <type-mapping>mySQL</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

thread poolIng

Thread pooling is the next most important area to consider as you tune your application for performance.
JBoss	EAP	has	robust	thread	pooling,	but	before	you	can	size	the	thread	pools	appropriately,	you	need	
to know how they are used and which ones might be affecting your application’s performance. The
characteristics	of	your	specific	application	will	determine	which	thread	pools	are	used	and	which	ones	
might	become	bottlenecks.	This	can	vary	significantly	from	application	to	application.	The	table	below	
provides	a	summary	of	how	each	thread	pool	is	used.

www.jboss.com 7

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

removing connectors

If	you	are	certain	that	a	particular	connector	will	not	be	used	in	your	application,	we	recommend	removing	
it.	For	example,	many	applications	use	either	the	HTTPd	thread	pool	or	the	mod_jk	thread	pool	but	not	both.	
So	you	can	remove	the	one	you	don’t	need.	

monitoring and tuning thread pools

Monitor	your	thread	pools	via	the	EAP	4.3	JMX	Console,	which	displays	not	only	the	number	of	active	
threads for each pool but also the queue size. We recommend that you adjust thread pool settings through
JBoss	Operations	Network,	as	it	allows	you	to	define	settings	that	persist.	Settings	adjusted	via	the	JMX	
console	will	not	survive	a	reboot.	If	you	use	the	JMX	console,	please	remember	to	go	back	and	edit	the	file	
if you want the adjustments to be permanent.

thread pool Where Is It defIned? hoW Is It used?

System thread pool In	jboss-service.xml	in	the	conf	directory For	JNDI	naming	—	the	default	setting	
is	fine	for	most	cases

HTTPD	thread	pool	
in JBoss Web

In	the	server.xml	file	under	<server>/
deploy/jboss-web.deployer

When	making	HTTP	requests	directly	
to EAP

AJP thread pool In	the	connector	section	of	server.xml When	making	HTTP	requests	through	
mod_jk

JCA thread pool
(also called the Work
Manager	thread	pool)

<server>/deploy/jbossjca-
service.xml

In	conjunction	with	JMS,	as	JBoss	
Messaging	uses	JCA	inflow	as	the	
integration into EAP

JBoss	Messaging	thread	
pool (for remote clients)

<server>deploy/jboss-messaging.
sar/remoting-bisocket-service.xml

Pools the TCP sockets

JBoss	Messaging	thread	
pool	(in	JVM	clients)

Not	directly	configurable Pool is bounded by the number of
MDBs	you	have	defined

EJB	3	(same	JVM) Clients	in	the	same	JVM	will	run	
on	whatever	thread	pool	they	are	
already using

For	example,	a	web	request	comes	
in through the AJP connector. When
it	calls	an	EJB	3	bean,	it	will	continue	
executing on the AJP connector
thread pool.

EJB (remote clients) <server>/ejb3/deployer/META-INF/
jboss-service.xml

8 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

example: http thread pool

<Connector port=”8080” address=”${jboss.bind.address}”
 maxThreads=”250” maxHttpHeaderSize=”8192”
 emptySessionPath=”true” protocol=”HTTP/1.1”
 enableLookups=”false” redirectPort=”8443” acceptCount=”100”
 connectionTimeout=”20000” disableUploadTimeout=”true” />

example: mod_jk or aJp thread pool

<!-- Define an AJP 1.3 Connector on port 8009 -->
 <Connector port=”8009” address=”${jboss.bind.address}” protocol=”AJP/1.3”
 emptySessionPath=”true” enableLookups=”false” redirectPort=”8443”
 maxThreads=”200” />

example: Jca thread pool

<mbean code=”org.jboss.util.threadpool.BasicThreadPool”
 name=”jboss.jca:service=WorkManagerThreadPool”>
 <!-- The name that appears in thread names -->
 <attribute name=”Name”>WorkManager</attribute>
 <!-- The maximum amount of work in the queue -->
 <attribute name=”MaximumQueueSize”>1024</attribute>
 <!-- The maximum number of active threads -->
 <attribute name=”MaximumPoolSize”>100</attribute>
 <!-- How long to keep threads alive after their last work (default one minute)
-->
 <attribute name=”KeepAliveTime”>60000</attribute>
 </mbean>
 <mbean code=”org.jboss.resource.work.JBossWorkManager”
 name=”jboss.jca:service=WorkManager”>
 <depends optional-attribute-name=”ThreadPoolName”>jboss.jca:service=
WorkManagerThreadPool</depends>
 <depends optional-attribute-name=”XATerminatorName”>jboss:service=
TransactionManager</depends>
 </mbean>

oBJect and component pools

Object pools and component pools are essentially the same thing. Their settings represent the number of
object	instances.	For	EJB	3	two	types	of	pools	are	defined	in	<server>/deploy/ejb3-interceptors-
aop.xml.	These	are	the	ThreadLocalPool	and	the	StrictMaxPool.	By	default,	Stateless	Session	and	Stateful	
Session	Beans	use	the	ThreadLocalPool,	which	is	backed	by	an	InfinitePool	with	no	maximum	size.	Therefore,	
it	grows	according	to	volume	in	your	application.	This	has	the	distinct	advantage	of	not	needing	to	be	tuned.	
By	default,	Message	Driven	Beans	(MDBs)	use	the	StrictMaxPool.	This	pool	actually	obeys	a	maximum,	will	

www.jboss.com 9

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

queue	up	requests	when	that	maximum	has	been	reached,	and	will	time	out	anything	in	the	queue	if	there	is	
not	an	available	reference	from	the	pool.	In	this	case,	the	system	will	throw	an	exception	and	if	the	problem	
occurred	in	mid-transaction,	you	will	experience	a	transaction	rollback.	Given	the	impact	failed	transactions	
can	have	on	your	business,	we	recommend	that	you	monitor	the	StrictMaxPool	closely	via	the	JMX	console.	

loggIng

Developers	should	take	full	advantage	of	logging	in	the	development	and	testing	phases	of	the	application	
lifecycle.	In	production,	however,	logging	can	cause	bottlenecks.	You	want	to	be	sure	that	logging	provides	
you with useful information without hurting application throughput. Consider making the following changes
as	you	promote	your	application	into	production:

turn off console logging in production.•	 	In	EAP’s	default	configuration,	console	logging	is	enabled,	which	
means	you	have	the	opportunity	to	see	all	the	logs	from	your	IDE.	In	production,	this	is	an	expensive	
process	with	unbuffered	I/O.	While	some	applications	may	be	fine	with	console	logging,	high-volume	
applications	benefit	from	turning	it	off.	JBoss	EAP	4.3	offers	a	new	configuration	set,	named	Production,	
which	gives	developers	a	better	starting	point	for	creating	a	production	environment.	In	the	Production	
configuration,	console	logging	is	turned	off.

turn down logging verbosity.•	 	The	less	you	log,	the	less	I/O	will	occur,	and	the	better	your	overall	
application	throughput	will	be.	Logging	is	always	a	tradeoff,	so	think	carefully	about	how	much	logging	
you really need in production.

use asynchronous logging.•	 This can make a big difference for high-throughput applications. With
asynchronous	logging,	log	messages	will	go	into	a	queue	and	control	returns	to	the	application	as	if	
the logging had been completed. Then a separate thread executes the log operations from the queue.

Wrap debug log statements with•	 If(debugEnabled()). This simple practice can make a huge
difference	if	your	application	contains	a	lot	of	debug	log	statements.	Without	this	condition	set,	your	
application	creates	all	of	the	string	objects	for	each	of	the	log	statements,	and	Log4j	creates	the	
LoggingEvent	object	for	each	log	statement	regardless	of	the	log	level	that	is	set	because	the	log	level	
is	checked	only	after	all	of	these	objects	have	been	created.	In	some	cases	this	can	lead	to	creation	
of	thousands	and	thousands	of	temporary	String	and	LoggingEvent	objects,	resulting	in	memory	and	
garbage collection issues and reducing throughput dramatically. By placing a conditional wrapper
around	your	debug	log	statements,	you	can	ensure	that	unnecessary	log	processing	does	not	affect	
your throughput.

cachIng

Caching,	while	often	very	helpful,	may	be	one	of	the	trickiest	areas	to	tune	correctly.	JBoss	Cache	is	an	
integral	part	of	the	EAP	infrastructure,	and	your	application	can	use	it	to	cache	anything	you	like.	Caching	
is	especially	valuable	for	applications	that	perform	a	lot	of	read	operations	against	data	that	is	either	
completely	static	or	doesn’t	change	frequently,	such	as	reference	data.	For	applications	with	heavy	use	of	
write	operations,	caching	may	simply	add	overhead	without	providing	any	real	benefit.	If	not	configured	
properly,	Caching	may	actually	reduce	throughput.

10			www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

One of the easiest potential performance enhancements you can make is to cache EJB 3 entities. To
define	which	entities	you	want	cached,	modify	the	file	persistence.xml that you deploy with your EJB
3	application	(an	example	is	shown	below).	You	define	the	cache	size	and	eviction	policy	in	the	file	ejb3-
entity-cache-service.xml	found	in	the	deploy	directory.	These	definitions	may	require	some	trial	
and	error	to	get	right.	Remember	that	you	are	working	with	limited	heap	space,	and	a	misguided	caching	
strategy can be worse than none at all.

Eviction	policy	will	depend	on	the	specifics	of	your	application.	You	can	define	the	cache	as	transactional	
or	read-write.	With	very	large	data	sets,	note	that	caching	may	not	provide	noticeable	performance	benefits.	
In	this	case,	shrinking	the	caches	can	improve	performance.	Also,	if	your	application	is	very	write-heavy,	
it	may	not	benefit	from	caching.	Testing	various	caching	and	non-caching	configurations	will	help	you	
determine this.

example: settings for caching in persistence.xml

<persistence>
<persistence-unit name=”services” transaction-type=”JTA”>
<provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/MySQLDS</jta-data-source>
 <properties>
 <property name=”hibernate.default_catalog” value=”EJB3”/>
 ...
 <property name=”hibernate.cache.provider_class”
 value=”org.jboss.ejb3.entity.TreeCacheProviderHook”/>
 <property name=”hibernate.treecache.mbean.object_name”
 value=”jboss.cache:service=EJB3EntityTreeCache”/>
 <property name=”hibernate.ejb.classcache.services.entities.Customer”
value=”read-only”/>
 <property name=”hibernate.ejb.classcache.services.entities.Inventory”
value=”transactional”/>
 ...
 </properties>
</persistence-unit>
</persistence>

JBoss eap performance tunIng summary

To	summarize,	keep	the	following	performance	recommendations	in	mind	when	tuning	JBoss	EAP	4.3.	

Define	data	sources	in	the	deploy	directory	and	take	advantage	of	EAP’s	robust	connection	pooling.•	

Understand	which	thread	pools	are	actually	used	by	your	application,	remove	pools	that	are	not	 •	
needed,	monitor	the	number	of	active	threads	and	the	queue	size,	and	adjust	pool	size	if	needed.

If	you	are	using	message-driven	beans,	monitor	the	StrictMaxPool	closely	to	ensure	that	the	maximum	•	
object pool size is not a bottleneck.

www.jboss.com 11

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

Employ	different	logging	strategies	for	development	and	production.	Especially	for	high-volume	•	
applications,	turn	console	logging	off,	reduce	logging	verbosity,	use	asynchronous	logging,	and	always	
wrap debug log statements with If (debugEnabled ()).

Take	advantage	of	caching	if	your	application	is	read-heavy	or	makes	significant	use	of	reference	data.	•	
Avoid	caching	for	very	large	data	sets	or	write-heavy	applications.	

lInux-specIfIc tunIng: large memory pages2

For	today’s	64-bit	systems,	use	of	large	memory	pages	can	improve	performance	significantly.	The	default	
memory	page	size	is	typically	4	KB.	When	you	are	addressing	large	amounts	of	memory,	this	quickly	adds	
up	to	a	large	number	of	memory	pages	—	just	one	gigabyte	requires	262,144	memory	pages.	That’s	a	lot	for	
a	system	to	keep	track	of,	which	translates	to	a	lot	of	system	overhead.

Aside	from	helping	you	avoid	the	overhead	of	mapping	so	many	memory	pages,	large	memory	pages	on	
Linux	cannot	be	swapped	to	disk.	This	is	a	major	advantage	because	having	your	heap	space	swap	to	disk	
can	wreck	havoc	on	the	performance	of	your	application.	

Large	page	support	begins	at	2	MB	and	can	run	as	high	as	256	MB	on	some	hardware	architectures.	These	
numbers	will	vary,	and	you	will	need	to	find	out	the	values	for	your	specific	server.	All	the	major	JVM	
systems	support	large	memory	pages	on	Linux.	Because	it	can	be	tricky	to	set	up,	we	provide	some	specific	
instructions in the appendix.

When	you	use	large-page	memory,	keep	in	mind	that	the	memory	is	not	available	to	applications	in	general.	
To	other	applications,	your	system	will	look	as	though	it	has	had	memory	removed	from	it,	because	this	
memory	will	be	dedicated	to	your	specific	application.	Refer	to	the	appendix	for	more	specific	information	
about	configuring	your	application	to	use	large	memory	pages.

lInux-specIfIc tunIng: tunIng the vIrtual memory manager

In	Linux,	the	virtual	memory	manager	is	tunable.	In	some	cases,	you	can	achieve	performance	benefits	by	
changing	the	settings.	You	won’t	be	using	the	file	system	cache	much,	and	you	don’t	want	the	system	to	
favor	the	file	system	cache	over	your	applications,	which	can	sometimes	occur	with	the	default	settings.	

In	/etc/sysctl.conf you can set vm.swappiness	to	1	to	prevent	applications	from	being	swapped	to	
disk when there is memory pressure.

dataBase tunIng update

Modern	databases,	especially	64-bit,	are	extremely	efficient	at	caching	data.	In	the	early	days	of	64-bit	
databases,	large	buffer	sizes	would	slow	performance	due	to	elongated	search	times,	but	this	is	no	longer	
true.	In	our	testing,	we	have	experienced	OLTP	applications	with	very	large	buffer	caches	that	show	very	
good results.

Consider	your	application’s	characteristics	—	especially	its	read/write	ratios	—	when	deciding	whether	and	how	
to	use	database	caching.	The	majority	of	applications	we	see	today	are	read-intensive,	as	most	applications	
drive	their	business	logic	by	reading	data	from	the	database.	The	more	read-intensive	the	application	is,	the	
more	caching	can	help.	If	the	application	is	write-heavy,	or	the	data	set	is	very	large	(from	a	data	warehouse,	
for	example),	then	a	large	cache	won’t	help	and	may	slow	down	the	application.	

2	 While	this	section	provides	Linux-specific	settings,	the	principles	of	large	memory	page	use	are	applicable	
to any 64-bit system.

12 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

You	should	use	Direct	I/O	if	your	database	supports	it.	Especially	with	a	large	cache	or	a	write-intensive	
workload,	you	should	avoid	double	buffering	with	the	file	system	buffer	cache.	Note	that	MySQL	5	
documentation	indicates	that	queries	may	slow	down	by	up	to	a	factor	of	3	when	using	DIRECT	I/O,	but	we	
have	not	experienced	this	in	cases	where	a	properly	sized	buffer	pool	is	used.	If	you	are	using	DIRECT	I/O,	
you	should	be	sure	to	use	the	virtual	memory	setting	mentioned	earlier.	We	also	suggest	using	asynchronous	
I/O	if	your	database	supports	it.

case study

To	demonstrate	the	dramatic	results	that	can	be	achieved	with	JBoss	EAP	performance	tuning,	we	
performed an experiment using a sample application.

We	began	with	JBoss	EAP’s	default	configuration	(with	one	minor	exception),	along	with	all	Linux	parameters	
at	their	defaults.	Using	Grinder,	an	open	source	Java	load-testing	framework,	we	measured	the	highest	
throughput	we	could	achieve	with	all	of	these	settings.	Using	the	same	application,	we	then	applied	many	of	
the	optimizations	discussed	here,	both	to	JBoss	EAP	and	to	the	operating	system	(in	this	case,	Linux),	and	
measured throughput again.

The	application	was	an	EJB3	application	with	two	servlets	for	the	UI,	stateless	and	stateful	session	beans	
for	most	of	the	business	logic,	a	message	driven	POJO	for	some	asynchronous	processing,	and	entities	for	
the	persistence.	All	tests	were	performed	with	3.5	GB	heap	and	a	data	source	with	sufficient	connections	
in the pool.

The	following	graph	first	illustrates	a	single	virtual	user	as	a	baseline	for	measuring	scalability	as	we	
added	users.	As	one	would	expect,	the	first	two	bars	are	statistically	equal	regardless	of	the	performance	
optimizations	made.	The	next	two	bars	show	how	many	virtual	users	we	could	achieve	before	we	were	no	
longer	at	85%	of	linear	scalability,	as	measured	by	a	transactions	per	second	(TPS)	mean	from	the	baseline	
(the	bars	on	the	left).	You	can	see	that	in	the	un-optimized	case,	we	were	able	to	reach	25	virtual	users,	
and	in	the	optimized	case,	we	were	able	to	reach	75	virtual	users.	We	achieved	a	threefold	increase	in	the	
number	of	virtual	users	that	the	same	system	could	support,	simply	by	optimizing	system	performance.

80

70

60

50

40

30

20

10

0

Baseline EJB 3 application
1 virtual user
TPS (mean)

No optimizations

Baseline EJB 3 application
1 virtual user
TPS (mean)
Optimized

Top throughput test
25 virtual users

TPS (mean)
No optimizations

Top throughput test
75 virtual users

TPS (mean)
Optimized

JBoss eap performance tunIng

www.jboss.com 13

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

application performance tuning:
a continuous process

Tuning	an	application	for	optimal	performance	can	ensure	a	positive	user	experience,	promote	business	
productivity,	and	help	to	optimize	use	of	hardware	and	software	resources.	Performance	tuning	is	not	a	
one-time	task,	but	an	ongoing	process	that	ensures	a	well-performing	application	as	business	conditions	
and	system	technology	change	over	time.	Application	developers	and	architects	should	always	be	prepared	
to	tune	their	applications	for	performance	both	before	and	after	they	are	put	into	production.	As	always,	
the	more	business-critical	an	application	is	and	the	higher	the	volume	of	transactions	it	must	support,	the	
more important performance tuning will be to your business.

When	tuned	in	accordance	with	the	characteristics	of	your	application,	JBoss	Enterprise	Application	
Platform	(EAP)	can	provide	superior	application	performance.	This	paper	has	given	you	an	overview	of	
basic performance principles as well as an introduction to performance tuning best practices for JBoss
EAP.	Keep	in	mind	that	these	techniques	apply	to	any	of	the	Red	Hat	platforms	that	JBoss	EAP	supports:	
JBoss	Enterprise	Portal	Platform,	JBoss	Enterprise	SOA	Platform,	and	JBoss	Enterprise	BRMS.

For	additional	information	on	JBoss	EAP	performance	tuning,	please	refer	to:	

Managing	application	performance:	JBoss	Operations	Network•	

JBoss	EAP	4.3	Server	Configuration	Guide•	

JBoss	EAP	Optimization	and	Tuning	Assistance	Services	•	

JBoss EAP 4.3 Product Documentation•	

appendix: using large-page memory
(linux-specific instructions)

This	appendix	contains	a	procedure	and	example	designed	to	help	you	take	advantage	of	large-page	memory	
for	your	applications.	See	the	section	“Linux-specific	tuning:	Large	memory	pages”	earlier	in	this	paper	for	
an	overview.	

1. tell the Jvm to use large-page memory.

Sun	JVM	and	Open	JDK	require	the	following	option,	passed	on	the	command	line,	to	use	large	pages:	

 -XX:+UseLargePages

The	Sun	instructions	leave	it	at	that,	but	if	you	do	nothing	else	you	will	most	likely	get	the	following	error:	
Failed to reserve shared memory (error-no=12)

The following sections describe additional steps you should complete.

14 www.jboss.com

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

2. set kernel parameters.

Set three kernel parameters in /etc/sysctl.conf	as	follows:

kernel.shmmax = n •	
Where n is equal to the number of bytes of the maximum shared memory segment allowed on the
system.	You	should	set	it	to	at	least	the	size	of	the	largest	heap	size	you	want	to	use	for	the	JVM.	
Alternatively,	you	can	set	it	to	the	total	amount	of	memory	in	the	system,	and	you	will	never	have	
to	revisit	it.

vm.nr_hugepages = n•	
Where	n	is	equal	to	the	number	of	large	pages.	You	will	need	to	look	up	the	large	page	size	in	
/proc/meminfo.

vm.huge_tlb_shm_group = gid•	
Where	gid	is	the	ID	of	a	shared	group	ID	for	the	users	you	want	to	have	access	to	the	large	pages.	
This setting enables you to limit access to the large memory segment.

3. set limits.conf parameters.

Next,	set	these	memlock	limits	in	/etc/security/limits.conf:

<username> soft memlock n
<username> hard memlock n

where <username>	is	the	runtime	user	of	the	JVM,	and	n	is	the	number	of	pages	from	vm.nr_hugepages
multiplied by the page size in KB from /proc/meminfo.

4. persist your settings.

Enter	the	command:

sysctl –p

This	ensures	that	the	settings	you	created	in	step	3	will	survive	a	reboot.

5. reboot.

When	the	OS	allocates	these	pages,	it	must	find	contiguous	memory	for	them	or	the	operation	will	fail.	
A	reboot	will	prevent	this	problem.

6.	Confirm	page	allocation.

When	large	pages	are	allocated,	/proc/meminfo will display a non-zero number for HugePages_Total.
If	you	do	not	see	a	non-zero	number,	then	you	are	not	using	the	large	pages,	and	something	is	configured	
incorrectly.

www.jboss.com 15

Best practices for performance tuning JBoss Enterprise Application Platform 4.3

We	have	sometimes	seen	a	problem	with	MYSQL	where	the	SELinux	policy	was	preventing	it	from	accessing	
the large pages. Check /var/log/messages for avc_denied messages (error-no=13 “permission
denied”) in the mysqld.log.

example: setting large memory pages

Consider	a	server	with	8	GB	of	memory.	We	will	allocate	6	GB	to	be	shared	by	the	JBoss	EAP	JVM	and	
a	MySQL	database.	

The	page	size	is	2	MB,	as	shown	in	/proc/meminfo (Hugepagesize: 2048KB)

Configuration:	/etc/sysctl.conf

Change	maximum	shared	memory	segment	size	to	8	GB. •	
kernel.shmmax = 8589934592

Add the gid to the •	 hugetlb_shm_group	to	give	access	to	the	users.
vm.hugetlb_shm_group = 501

Add	6	GB	in	2	MB	pages	to	be	shared	between	the	JVM	and	MySQL. •	
vm.nr_hugepages = 3072

Calculations:	

	 1024*1024*1024*8	=	8589934592

	 (1024*1024*1024*6)/(1024*1024*2)	or	6	GB/2	MB	=	3072	pages

Configuration:	/etc/security/limits.conf

Add	the	limits	for	memlock	to	allow	the	JVM	and	MySQL	to	access	the	large-page	memory.•	

 jboss soft memlock 6291456
 jboss hard memlock 6291456
 mysql soft memlock 6291456
 mysql hard memlock 6291456
 root soft memlock 6291456
 root hard memlock 6291456

Calculations:	

	 3072	large	pages	*	2048	KB	page	size	–	3072	*2048	=	6291456

Configuration:	/etc/group

Add	JBoss	and	MySQL	users	to	the	501	(•	 hugetlb) group in /etc/group	to	give	users	permission	
to attach to the shared memory segment.

JBoss sales and InquIrIes NORTH	AMERICA

1–888–REDHAT1
www.jboss.com

Copyright	©	2009	Red	Hat,	Inc.	Red	Hat,	Red	Hat	Enterprise	Linux,	the	Shadowman	logo,	JBoss,	MetaMatrix,	and	
RHCE	are	trademarks	of	Red	Hat,	Inc.,	registered	in	the	U.S.	and	other	countries.	Linux® is the registered trademark
of	Linus	Torvalds	in	the	U.S.	and	other	countries.	

www.jboss.com
1388350_1109

